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Abstract Westudy the use of sparse grids in the scenario generation (or discretization)
problem in stochastic programming problems where the uncertainty is modeled using
a continuous multivariate distribution. We show that, under a regularity assumption
on the random function involved, the sequence of optimal objective function values of
the sparse grid approximations converges to the true optimal objective function values
as the number of scenarios increases. The rate of convergence is also established. We
treat separately the special case when the underlying distribution is an affine transform
of a product of univariate distributions, and show how the sparse grid method can be
adapted to the distribution by the use of quadrature formulas tailored to the distribution.
We numerically compare the performance of the sparse grid method using different
quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one
lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility
maximization problems with up to 160 random variables. The results show that the
sparse grid method is very efficient, especially if the integrand is sufficiently smooth.
In such problems the sparse grid scenario generation method is found to need several
orders ofmagnitude fewer scenarios thanMCandQMC scenario generation to achieve
the same accuracy. It is indicated that the method scales well with the dimension of
the distribution—especially when the underlying distribution is an affine transform
of a product of univariate distributions, in which case the method appears scalable to
thousands of random variables.
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1 Introduction

Stochastic optimization is a fundamental tool in decision making, with a wide variety
of applications (see, e.g., Wallace and Ziemba [43]). A general formulation of this
problem is

min
x∈C

∫
Ξ

f (ξ, x)P(dξ), (1)

where the n-dimensional random parameters ξ are defined on a probability space
(Ξ,F , P),F is the Borel σ -field on Ξ, P represents the given probability measure
modeling the uncertainty in the problem, and C ⊆ R

n̄ is a given (deterministic) set of
possible decisions.

In practice, the probability measure P is often given or approximated by a discrete
one, with finite number of scenarios ξ k(k = 1, . . . , K ) with positive probabilities wk ,
which amounts to the approximation of the integral in (1) by a finite sum:

min
x∈C

∫
Ξ

f (ξ, x)P(dξ) ≈ min
x∈C

K∑
k=1

wk f
(
ξ k, x

)
. (2)

The efficient generation of scenarios that achieve good approximation in (2) is, thus,
a central problem in stochastic programming.

Several methods have been proposed for the solution of this problem. The popular
Monte Carlo (MC) method uses pseudo-random numbers (vectors) as scenarios and
uniform weights w1 = · · · = wK = 1/K . Pennanen and Koivu [36] use quasi-
Monte Carlo (QMC) methods, that is, classic low-discrepancy sequences, the Faure
sequence, the Sobol sequence, or the Niederreiter sequence, as scenarios along with
uniform weights. The QMC literature has undergone a tremendous improvement in
the last decade or so, with the development of more advanced number-theoretic rules,
digital nets, and lattice rules. Summarizing all the developments here is impossible;
the interested reader is encouraged to consult one of the recent comprehensive works
on QMC methods, such as [7].

Scenario reduction methods, e.g [4,16] generate a large number of scenarios, and
select a small, “good”, subset of them, using different heuristics and data mining
techniques, such as clustering and importance sampling. Dempster and Thompson [6]
use a heuristic based on the value of perfect information, with parallel architectures in
mind. Optimal discretization approaches [10,38] choose the scenarios by minimizing
a probability metric; the same approach is also applicable to scenario reduction. Casey
andSen [2] apply linear programming sensitivity analysis to guide scenario generation.
Finally, the authors of this paper have previously approached scenario generation
in data-driven settings by moment matching, that is, matching or approximating the
sample moments of observed scenarios [25].

123

Author's personal copy



Scenario generation for stochastic optimization problems... 671

King and Wets [19] and Donohue [8] studied epi-convergence of the MC method.
Epi-convergence of the QMCmethods is established in Pennanen and Koivu [37], and
Pennanen [35]. Since establishing the rate of convergence is difficult, different scenario
generation methods are usually compared to each other numerically. Pennanen and
Koivu [37] tested QMC methods on the Markowitz model. The Markowitz model has
an alternate closed form expression of the integral, which allows one to test the quality
of the approximation by comparing the objective value from the approximated model
with the true optimal objective value. If the true optimal value is unknown, a statistical
upper and lower bound obtained from MC sampling (see, e.g, [30]) may be used to
compare scenario generation methods. Kaut and Wallace [18] give further guidelines
for evaluating scenario generation methods.

The main contributions of this paper are twofold. Two variants of a sparse grid
scenario generation method are proposed for the solution of stochastic optimization
problems. Neither method requires knowledge of the exact distribution; it is suffi-
cient that the moments up to a high enough order are known. However, to simplify
the presentation we shall always assume that we have a known distribution. After
establishing their convergence and rate of convergence (Theorems 4, 5), we numeri-
cally compare the two sparse grid methods to MC and QMC methods on a variety of
problems which differ in their dimensionality, objective, and underlying distribution.
The results show that the sparse grid method compares favorably with the MC and
QMC methods for smooth integrands, especially when the uncertainty is expressible
using distributions that are affine transformations of a product ofmutually independent
univariate distributions (such as the multinormal distribution). In such problems, the
sparse grid scenario generation method is found to need several orders of magnitude
fewer scenarios than MC and QMC scenario generation to achieve the same accuracy.

The paper is organized as follows. In Sect. 2 we review Smoljak’s sparse grid
approximation method and its application to scenario generation. We present two
variants of the method. A general method is presented in Sect. 2.3, whereas the variant
presented Sect. 2.4 is designed for problems that can be transformed affinely to a prob-
lem whose underlying probability distribution is a product of univariate distributions.

In Sect. 2.5 we show that both variants of the sparse grid method give an exact
representation of (1) if the integrand function belongs to a certain polynomial space.
In Sect. 3 we also show that the first variant of the method is uniformly convergent
under appropriate assumptions, and that its rate of convergence is the same as the rate of
convergence of the underlying sparse grid numerical integration methods. Numerical
results follow in Sect. 4. We give results both on stochastic optimization problems
which have been used to compare scenario generation methods in the literature, and
on considerably larger new simulated examples. The motivating application in these
examples is portfolio optimization with various utility functions as objectives. The
results show numerically that the sparse grid method compares favorably with the
MC and QMC methods for smooth integrands, and scales very well to problems with
a large number of random variables when the underlying distribution is an affine
transformation of a product of multivariate distributions. The results are summarized
in Sect. 5.
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672 M. Chen et al.

2 Sparse grid methods in numerical integration

2.1 Univariate quadrature rules

The basic ingredient of sparse grid scenario generationmethods is a univariate quadra-
ture rule. A quadrature rule for a weight function ρ gives, for every ν ∈ N, a
set of points (or nodes) {ων,1, . . . , ων,L(ν)} ⊆ R

L(ν) and corresponding weights
wν,1, . . . , wν,L(ν) ∈ R, used to approximate a one-dimensional integral:

∫
Ω

g(ω)ρ(ω)dω ≈ Iν[g] def=
L(ν)∑
k=1

wν,kg(ων,k). (3)

Here Ω is either a closed bounded interval (without loss of generality, [0, 1]) or
the real line R, and ρ : Ω �→ R+ is a given nonnegative, measurable weight func-
tion. Equivalently, we can identify a quadrature rule with the sequence of functionals
I1[·], I2[·], . . .. Naturally, both the nodes and the weights depend on the given weight
function ρ and the domain Ω , although for the sake of simplicity we shall not empha-
size this in our notation; both of them will always be clear from the context. For the
stochastic optimization problems of our concern it is sufficient to consider probabil-
ity density functions ρ of continuous random variables that are supported on Ω , and
which have finite moments of every order m ∈ N. For a given univariate quadrature
rule the number of points is specified by the function L(ν) : N → N, where ν is called
the resolution of the formula. Different univariate quadrature rules differ in L(·), and
in the nodes and weights they prescribe for a fixed ν.

Examples of univariate quadrature rules for Ω = [0, 1] with the constant weight
function ρ = 1 include the Newton–Cotes (midpoint, rectangle, and trapezoidal)
rules, the Gauss–Legendre rule, the Clenshaw–Curtis rule, and the Gauss–Kronrod–
Patterson (or GKP) rule; see, for example, Davis and Rabinowitz [5] or Neumaier
[27] for the definitions of these rules. Examples of quadrature rules for other domains
and commonly used weight functions, including the case when Ω = R and ρ(ω) =
exp(−ω2), can be found in Krylov’s monograph [20].

We mention two particularly important families of quadrature rules that are also
used in this paper. Gaussian quadrature rules [20, Chap. 7] are the generalization of
Gauss–Legendre rules, and can be defined for every domain and weight function; they
satisfy L(ν) = ν. We introduce the second family, Patterson-type rules in Sect. 2.4;
the number of points in these rules increase exponentially with the resolution.

An important feature of quadrature rules is their degree of polynomial exactness
(sometimes called degree of precision), which is the largest integer Dν for which the
approximation (3) with resolution ν is exact for every polynomial of degree up to
Dν . For example, for every density function ρ there exists a unique quadrature rule
(known as Gaussian rule) satisfying L(ν) = ν and Dν = 2ν − 1 for every ν ≥ 1; see,
for example, [20]. As another example, the GKP rule (for the uniform distribution)
satisfies D1 = 1 and Dν = 3 · 2ν−1 − 1, for ν ≥ 2 [14]. High degree of polynomial
exactness translates to a good approximation of the integrals of functions approximable
by polynomial functions. For r -times weakly differentiable functions f the error in
the approximation (3) can be estimated as:
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∣∣∣∣
∫

Ω

f (ω)ρ(ω)dω −
L(ν)∑
k=1

wν,k f (ων,k)

∣∣∣∣ = O
(
K−r ) ,

where K = L(ν) is the number of nodes. (See also Theorem 2 below).
If the nodes Ων of a quadrature rule satisfy Ων ⊂ Ων+1 for every ν (that is, if

every node at a given resolution is also among the nodes of all higher resolution node
sets), then the univariate quadrature rule is said to be nested. The nodes of Gaussian
quadrature rules are not nested. Examples of nested univariate quadrature rules are the
iterated trapezoidal, the nested Clenshaw–Curtis, and the GKP formulas [14], as well
as the Patterson-type rules of Sect. 2.4. In general, nested quadrature rules are preferred
in the sparse grid scenario generation, as sparse grids built using nested rules have
fewer scenarios than those built using non-nested rules. (This follows immediately
from the construction presented in the next section.) Nested quadrature rules for non-
uniform distributions can be generated, for example, using the algorithm described in
[24].

It follows from the definition that a univariate quadrature formula with polynomial
exactness of degree d (with respect to the distribution P) has the same polynomial
exactness for every distribution with the same first d moments as P . In other words,
the construction of univariate quadrature formulas do not need an exact specification
of P , it is sufficient to know enough moments of P . The same holds for multivariate
distributions, and specifically, the sparse grid formulas.

2.2 Product grids, and Smoljak’s sparse grid construction for [0, 1]n

IfΞ = Ωn = [0, 1]n and ρ(ω1, . . . , ωn) = ρ1(ω1) · · · ρn(ωn) is a separable function,
simple formulas for approximating the integral

∫
Ξ

f (ξ)ρ(ξ)dξ can be obtained by
considering direct products of univariate quadrature formulas, as follows.

For each i = 1, . . . , n, fix a quadrature rule I i ; this gives a formula I iν at resolution
ν, with nodes ωi

ν,1, . . . , ω
i
ν,Li (ν) and corresponding weights wi

ν,1, . . . , w
i
ν,Li (ν). In

other words, let the univariate quadrature rule for the weight function ρi be given as
the sequence of functionals

I iν[g] =
Li (ν)∑
k=1

wi
ν,kg

(
ωi

ν,k

)
; ν = 1, 2, . . . .

Then define, for every multi-index ν = (ν1, . . . , νn) ∈ N
n , the product of the

univariate formulas at resolution ν as

(
I 1ν1 ⊗ · · · ⊗ I nνn

)
[ f ] def=

L1(ν1)∑
k1=1

· · ·
Ln(νn)∑
kn=1

w1
ν1,k1 · · ·wn

νn ,kn f
(
ω1

ν1,k1 , . . . , ω
n
νn ,kn

)
.

Wecall the resultingmultivariate quadrature rule the product of the underlying univari-
ate quadrature rules, and the use of this formula for multivariate numerical integration
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674 M. Chen et al.

is sometimes referred to as the “full grid” or “dense grid” approach, as opposed to the
“sparse grid” approach discussed below.

The degree of exactness of the above product formula is the same as the minimum
of the exactness of the underlying univariate formulas. It is clear that this approach
does not scale well with the dimension; Table 1 shows the number of nodes of the
products of univariate Gaussian quadrature rules for different dimensions and degrees
of exactness.

Sparse grid formulas are also based on univariate formulas and their products, but
they avoid the sharp increase in the number of nodes as the dimension increases by
using a combination of lower resolution formulas. The classic sparse grid approxima-
tion framework was established by Smoljak in [41]; to keep the paper self-contained,
we now briefly describe this construction applied to multivariate integration, and sum-
marize the main results on this topic. See also [1] for a more comprehensive review
on sparse grid methods (with a focus on differential equations), and [15] for a short
and transparent introduction to its application to numerical integration.

As above, let ρ(ω1, . . . , ωn) = ρ1(ω1) · · · ρn(ωn) be a given separable n-variate
weight function; we shall construct a multivariate quadrature formula for every given
resolution ν = (ν1, · · · , νn). Let Ω i

νi
= {ωi

νi ,1
, . . . , ωi

νi ,Li (νi )
} be the nodes of the

univariate quadrature rule for the weight function ρi with resolution νi , and let
wi

νi ,1
, . . . , wi

ν,Li (νi )
be the corresponding weights.

Now, for every given positive integer q, Smoljak’s sparse grid formula uses the
points in

G(q, n)
def=

⋃
q≤‖ν‖1≤q+n−1

(
Ω1

ν1
× · · · × Ωn

νn

)
, (4)

and approximates the multivariate integral

∫
Ωn

f (ω)ρ(ω)dω (5)

by a linear combination of smaller product formulas, given by

SGq [ f ] def=
∑

q≤‖ν‖1≤q+n−1

(−1)q+n−‖ν‖1−1
(

n − 1
‖ν‖1 − q

) (
I 1ν1 ⊗ · · · ⊗ I nνn

)
. (6)

We now present results on the error estimates for the sparse grid method in approx-
imating a multidimensional integral. Theorem 1 shows that Smoljak’s multivariate
quadrature preserves the underlying univariate quadrature rule polynomial exact-
ness property. For example, if n = 2, q = 2, then using the Gaussian quadrature
rule the approximation is exact for polynomials that are a linear combination of
x, x2, x3, y, y2, y3, xy, x2y, xy2, x3y, xy3, and a constant. Hence, the approxima-
tion is exact for all polynomials of degree 3, and monomials x3y, xy3 of degree 4.
In general, for any n and q = 2 the approximation is exact for n-variate polynomials
of degree 3. A general result on polynomial exactness is restated in the following
theorem.
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Theorem 1 (Gerstner and Griebel [14], Novak and Ritter [31,32]) Let q ∈ N, and
the sparse grid approximation of (5) be given as in (6). Let Dνi be the degree of
polynomial exactness of a univariate quadrature rule with resolution νi . Let PDνi

⊗
PDν j

represent the space of polynomials generated by linear combination of products
of monomials pki (xi ) with pk j (x j ), where the monomial degree ki ≤ Dνi and k j ≤
Dν j . Then the value of (6) is equal to the integral (5) for every polynomial f ∈ P

n
q :=∑

‖ν‖1≤q+n−1

{
PDν1

⊗ · · · ⊗ PDνn

}
.

The same holds if we replace the domain of the univariate quadrature rules Ω =
[0, 1] with any other, possibly unbounded, interval Ω .

In Theorem 2 we restate a result providing an error bound on the approxima-
tion, when the integrand is not a polynomial. In this theorem the functional space
includes functions with weak derivatives. Weak derivatives are defined for integrable,
but not necessarily differentiable functions [11,40]. We shall use the common short-

hand Ds f
def= ∂s1+···+sn f

∂s1ω1···∂snωn
.

Theorem 2 [14,31] Suppose Ω = [0, 1], and consider the functional space

Wr
n :=

{
f : Ωn → R, max‖s‖∞≤r

∥∥Ds f
∥∥∞ < ∞

}
, (7)

equipped with the norm ‖ f ‖ = max‖s‖∞≤r ‖Ds f ‖∞. Assume that the chosen uni-
variate quadrature rule satisfies L(1) = 1, L(ν) = O(2ν). For n, r ∈ N, f ∈ Wr

n ,
then K := |G(q, n)| = O(2qqn−1) is the cardinality of the sparse grid. Furthermore,
for some 0 < cr,n < ∞ we have

∣∣∣∣
∫

Ωn
f (ω)ρ(ω)dω − SGq [ f ]

∣∣∣∣ ≤ cr,nK
−r (log K )(n−1)(r+1)‖ f ‖. (8)

The constant cr,n in Theorem 2 depends only on dimension n, the order of differ-
entiability r , and the underlying univariate quadrature rule used by the sparse grid
method. Although for some cases cr,n is known (see Wasilkowski and Woźniakowski
[44]), in general one can not expect to know the exact value of cr,n a priori. Recent
results in [17] indicate that cr,n can be exponential in n. This theorem nevertheless pro-
vides us with a rate of convergence of the approximation error of sparse grid formulas
for numerical integration.

Table 1 compares the number of nodes required by the full grid and the sparse grid
formulas to achieve the same degree of polynomial exactness. It shows that even the
product formula with the fewest nodes (the product of Gaussian quadrature formulas)
does not scale to dimensions higher than approximately 10. In contrast, sparse grid
formulas using GKP univariate quadrature rules can achieve at least moderate degree
of exactness for problems with a few hundred variables. Figure 1 shows Smoljak’s
sparse grid points using GKP rules for two and three dimensions, for q = 5.

We emphasize that sparse grid methods help combat the “curse of dimensionality”
by benefiting from the differentiability of the integrand. For a given problem of dimen-
sion n, the integration error goes to zero fast for sufficiently differentiable functions
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676 M. Chen et al.

Table 1 Number of nodes in
the most efficient product grid
(product of Gaussian formulas)
and in the sparse grid created
using GKP quadrature formulas,
for various dimensions and
degrees of exactness

Dimension n Degree d Full grid (Gaussian) Sparse grid (GKP)

n = 5 d = 3 32 11

d = 5 243 71

d = 7 1024 351

d = 9 3125 1471

d = 11 7776 5503

d = 13 16,807 18,943

n = 10 d = 3 1024 21

d = 5 59,049 241

d = 7 1,048,576 2001

d = 9 9,765,625 13,441

d = 11 6.0466 × 107 77,505

n = 20 d = 3 1,048,576 41

d = 5 3.4868 × 109 881

d = 7 1.0995 × 1012 13,201

d = 9 9.5367 × 1013 154,881

n = 50 d = 3 1.1259 × 1015 101

d = 5 7.1790 × 1023 5201

d = 7 1.2677 × 1030 182,001

n = 200 d = 3 1.6070 × 1060 401

d = 5 2.6561 × 1095 80,801

(a) d = 2 (b) d = 3

Fig. 1 Sparse grid on unit square and unit cube for q = 5 with underlying GKP univariate quadrature.
There are 129 scenarios in the unit square and 351 scenarios in the unit cube, a d = 2, b d = 3

since for r ≥ 2 in (8) the term K−r dominates (log K )(n−1)(r+1). In comparison, MC
methods and most classic QMC methods (based on low-discrepancy sequences) do
not exploit the differentiability of the integrand [28,29,42]). The rate of convergence
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for classic QMC methods (including Halton, Sobol, or Niederreiter sequences) is of
the order O(K−1(log K )n) for sufficiently “smooth” integrands, meaning integrands
of bounded Hardy–Krause variation.

Some modern quasi-Monte Carlo methods, in particular lattice rules also exploit
the differentiability of the integrand as well as additional regularity conditions, such
as fast decay in the Fourier coefficients [28, Chap. 5]. See also [21] for the optimal
attainable rates of convergence under such assumptions and algorithms to generate
lattice rules with optimal rate of convergence in this sense. L’Ecuyer and Munger [22]
is a recent software tool for constructing lattice rules with state-of-the-art algorithms.

We shall prove in Sect. 3 that the sparse grid convergence results carry over from
integration to stochastic optimization problems. Before that we must consider inte-
gration with domains other than [0, 1]n .

2.3 Sparse grid scenario generation for general distributions and domains

The integration domain of the sparse grid method presented in Sect. 2.2 is of the form
[0, 1]n , which gives a straightforward application to expected value computation for
distributions supported on the same domain. For more general distributions we need
to perform a change of variables before applying the sparse grid method. Suppose
that g is a continuously differentiable diffeomorphism with the property that if ω is
uniformly distributed on (0, 1)n , then g(ω) is distributed according to P . Then, from
Folland [12, Theorem 2.47(b)],

∫
Ξ

f (ξ)P(dξ) =
∫
g((0,1)n)

f (ξ)P(dξ) =
∫

(0,1)n
f (g(ω))dω.

To approximate the integral
∫
Ξ

f (ξ)P(dξ) we can proceed as follows:

1. Choose a q ≥ 1, and generate the set G(q, n) ⊂ (0, 1)n of K scenarios and the
corresponding weights by Smoljak’s sparse grid construction for integration with
respect to the constant weight function over (0, 1)n .

2. Apply (pointwise) the transformation g to G(q, n) to generate the stochastic opti-
mization scenarios.

3. Use the transformed scenarios to approximate the integral
∫
Ξ

f (ξ)P(dξ).

The transformation of formulas via the diffeomorphism g is also the standard way
to apply QMC sampling for general distributions: in Step 1 of the above algorithm
the sparse grid scenarios G(q, n) can be replaced by the points of a low-discrepancy
sequence or by the points of a rank-one lattice to obtain the QMC formulas.

2.4 Sparse grid scenario generation using univariate quadrature rules for
general weight functions and affine transformations

It is not essential that the sparse grid formula that we start with in Step 1 above is
the sparse grid corresponding to the constant weight function over (0, 1)n ; one could
analogously transform other sparse grid formulas built using Smoljak’s construction
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from other univariate quadrature formulas supported on any subset ofR. See Example
1 below,where the initial sparse grid formula iswith respect to the product of univariate
normal distributions.

Also note that while the sparse grid formula for integrating with respect to a product
measure has the degree of exactness of our choice, the same does not hold for the
transformed formula for integrating over Ξ with respect to P . In other words, f (g(·))
may not be a polynomial even when f (·) is. Only when g is affine, is the degree of
exactness of the sparse grid formula preservedduring the transformationwith g.Hence,
sparse grid formulas with a prescribed degree of exactness can be computed for every
probability measure that is an affine transform of a product of mutually independent
probability measures onR. An important special case when such a transformation can
be used is the multivariate normal distribution:

Example 1 Let μ ∈ R
d be arbitrary, and 
 ∈ R

d×d be a positive definite matrix
with spectral decomposition 
 = U�UT. If X is a random variable with standard
multinormal distribution, then the variable Y = μ + U�1/2X is jointly normally
distributed with mean vector μ and covariance matrix 
. Therefore, a sparse grid
formula with degree of exactness D can be obtained from any univariate quadrature
rule consisting of formulas exact up to degree D for integration with respect to the
standard normal distribution. Such quadrature rules include the following:

1. Gauss–Hermite rule [20, Sec.7.4]. The nodes of the Gauss–Hermite quadrature
formula of resolution ν(ν = 1, 2, . . . ) are the roots of the Hermite polynomial of
degree ν, defined by Hν(x) = (−1)νex

2/2 dν

dxν e−x2/2. With appropriately chosen
weights this formula is exact for all polynomials up to degree 2ν − 1, which is the
highest possible degree for formulas with ν nodes. The Gauss–Hermite rule is not
nested.

2. Genz–Keister rule [13]. The Genz–Keister rule is obtained by a straightforward
adaptation of Patterson’s algorithm [33] that yields the GKP rule for the uniform
distribution. This rule defines a sequence of nested quadrature formulas for the
standard normal distribution. The number of nodes of its first five formulas are
1, 3, 9, 19, and 35, the corresponding degrees of exactness are 1, 5, 15, 29, and 51.

Sparse grid scenarios using Patterson-type nested quadrature rules

The discussion in Example 1 can be applied to distributions other than the uniform and
the normal distributions.Gaussian quadrature formulas, that is, formulas with degree
of polynomial exactness Dν = 2ν − 1 with L(ν) = ν nodes can be obtained for
every continuous distribution using a straightforward algorithm [20, Chap. 7]. These
formulas are unique (for given ν and distribution), and they have the highest possible
degree of polynomial exactness, but they are not nested.

It is also possible to generalize Patterson’s method from [33] that yields the GKP
rule for the uniform distribution and the Genz–Keister rules for the standard normal
distribution to obtain nested sequences of quadrature formulas for other continuous
distributions with finite moments. One such extension is given in [34]. As mentioned
above, it is possible to work without the exact specification of the underlying dis-
tribution, and use only the moments of the distribution. The report [24] presents an
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algorithm that computes nested sequences of univariate quadrature formulas for arbi-
trary distributions with finite moments directly from the moments of the distribution.

2.5 The degree of exactness of transformed sparse grid formulas

Theorem 3, below, states that for integrands that are polynomials after the diffeo-
morphism to product form, the approximation (2) using the transformed sparse grid
scenarios of Sect. 2.3 gives an exact representation of (1). As mentioned above, the
same holds for sparse grid formulas of Sect. 2.4, as the affine transformations map
polynomials to polynomials of the same degree, preserving the degree of exactness of
the formulas.

Theorem 3 Consider the optimization problem (1) and its approximation (2), where
the weights and scenarios are generated using the sparse grid method, with some
control parameter q ≥ 1, using either the approach described in Sect. 2.3 or the
approach in Sect. 2.4. If the underlying univariate quadrature rule used in the sparse
grid construction has degree Dνi of polynomial exactness at resolution νi , and ∀x ∈
C the function f (g(·), x) is a member of the space of polynomials P

n
q defined in

Theorem 1, then x∗ is an optimal solution of (1) if and only if x∗ is an optimum
solution of (2).

Proof Follows immediately from Theorem 1: under the assumptions, the approxima-
tion (2) is exact, therefore the two problems are identical. ��

3 The rate of convergence of sparse grid scenario generation

Wenow give convergence results for the stochastic optimization problems (2) obtained
using the approach described in Sect. 2.3.

Theorem 4 presents a uniform convergence result for optimization using sparse
grid approximations for functions with bounded weak derivatives. Note that since the
sparse grid method may generate negative scenario weights, the previous convergence
results by King andWets [19], Donohue [9], and Pennanen [35] do not apply, and also
that the convergence result in Theorem 4 is slightly stronger than the epi-convergence
results for the QMC methods in [35].

Finally, a rate of convergence result for the sparse grid approximation is given in
Theorem 5.

Theorem 4 (Convergence of the sparse grid method) Consider the optimization
problem (1) and its approximation (2), where the scenarios are generated using a trans-
formed sparse grid approximation of Sect. 2.3. Assume that C is closed and bounded,
and that for every x ∈ C the function f (·, x) is bounded with f (g(·), x) ∈ Wr

n . Let x
∗

be an optimal solution of (1) with optimal value z∗, and let xK be an optimal solution
of the sparse grid approximation with optimal value z∗K . Then

(i) z∗ ≥ limK z∗K .
(ii) Every cluster point x̂ of the sequence {xK }∞K=1 is an optimal solution of (1).
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Proof We defer to proof of the first claim, as we give a stronger result, on the rate of
convergence of the optimal objective function values, in Theorem 5.

For the second claim, let F(x) = ∫
Ξ

f (ξ, x)P(dξ), QK (x) = ∑K
k=1 wk f (ξ k, x),

and let xK1 , xK2 , . . . be a convergent infinite subsequence of x1, x2, . . . with limit
point x̂ .

First, observe that because f (g(·), x) ∈ Wr
n for every x in the closed and bounded

C, there exists a finite constant M satisfying ‖ f (g(·), x)‖ ≤ M for every x . Now, from
Theorem 2 we also have that for every x ∈ C,

|F(x) − QK (x)| ≤ cr,nK
−r (log K )(n−1)(r+1)‖ f (g(·), x)‖

≤ cr,nK
−r (log K )(n−1)(r+1)M,

implying that the sequence of functions (QKt )t=1,2,... converges to F uniformly on C.
Combining this with the continuity of F , we also obtain that for every ε > 0,

∣∣∣QKt (x
Kt ) − F(x̂)

∣∣∣ ≤
∣∣∣QKt (x

Kt ) − F(xKt )

∣∣∣ +
∣∣∣F(xKt ) − F(x̂)

∣∣∣ < ε

for every sufficiently large Kt > K (ε), that is,

lim
t

QKt

(
xKt

)
= F(x̂). (9)

We now have the following chain of inequalities:

lim
t

QKt

(
xKt

)
≤ lim

t
QKt (x

∗) (10)

= F(x∗) (11)

≤ F(x̂) (12)

= lim
t

QKt

(
xKt

)
, (13)

where the inequality (10) follows from the optimality of xKt , the equation (11) comes
from the convergence of the sequence (QKt )t=1,2,... to F , (12) follows from the opti-
mality of x∗, and (13) is the same as (9).

Comparing the left- and right-hand sides of this chain of inequalities we find that
all inequalities must hold with equality, therefore F(x̂) = F(x∗), as we claimed. ��

Theorem 5 (Rate of convergence)Consider (1) and its sparse grid approximation (2),
where the scenarios are generated using a transformed sparse grid approximation of
Sect. 2.3. Assume that C is closed and bounded, and that for every x ∈ C the function
f (·, x) is bounded with f (g(·), x) ∈ Wr

n . Let x
∗ be an optimal solution of (1), and

xK be an optimal solution of (2), then
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∣∣∣∣∣
K∑

k=1

wk f (ξ k, xK ) −
∫

Ξ

f (ξ, x∗)P(dξ)

∣∣∣∣∣ ≤ ε, and (14)

∣∣∣∣
∫

Ξ

f (ξ, xK )P(dξ) −
∫

Ξ

f (ξ, x∗)P(dξ)

∣∣∣∣ ≤ 2ε, (15)

where

ε = cr,nK
−r (log K )(n−1)(r+1) max

x∈C
‖ f (g(·), x)‖, (16)

and cr,n, K ,Wr
n , and ‖ · ‖ are defined as in Theorem 2.

Proof Let F(x) = ∫
Ξ

f (ξ, x)P(dξ) and QK (x) = ∑K
k=1 wk f (ξ k, x). Then from

Theorem 2, and using the optimality of xK and x∗, we have that for every sufficiently
large K ,

F(x∗) − QK (xK ) ≤ F(xK ) − QK (xK ) ≤ ε,

and

F(x∗) − QK (xK ) ≥ F(x∗) − QK (x∗) ≥ −ε.

This proves (14). Now from (14) and Theorem 2, respectively, we have

−ε ≤ QK

(
xK

)
− F

(
x∗) ≤ ε

−ε ≤ F
(
xK

)
− QK

(
xK

)
≤ ε.

Hence, −2ε ≤ F(xK ) − F(x∗) ≤ 2ε. ��
Theorem 5 suggests that using the sparse grid approximation the optimal objective

value of (2) converges to the optimal objective value of (1) with the same rate as sparse
grid numerical integration.

4 Numerical examples

Our first example (Sect. 4.1) demonstrates the finite convergence of the sparse grid
scenario generation for polynomial models. It is a simple example involving the
Markowitz model, taken from Rockafellar and Uryasev [39]. The objective, the vari-
ance of the return of the portfolio, can be expressed as the integral of a quadratic
polynomial.

In Sect. 4.2 we consider a family of utility maximization problems. We consider
three different utility functions and three different distributions: normal, log-normal,
and one involving Beta distributions of various shapes.With these examples we exam-
ine the hypothesis that with a sufficiently smooth integrand sparse grid formulas with
high degree of exactness provide a good approximation of the optimal objective func-
tion values to stochastic programs even for high-dimensional problems, regardless of
the shape of the underlying distribution.
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In the examples we compare variants of the sparse grid method (SG) to MC and
QMC sampling. The literature on both of these areas is vast, and it would be unreason-
able to attempt a comparison of all the methods that have been proposed in the last few
decades, especially as only very few methods have reliable implementations available
in the public domain. In our experiments we considered six alternative methods to
sparse grids; they belong to three major categories:

1. MC sampling As variance reduction is not the concern of this paper, we used a
straightforward implementation of MC sampling.

2. QMC with low-discrepancy sequences We considered four well-known low-
discrepancy sequences: the Halton, reverse-Halton, Sobol, and Niederreiter
sequences. Our experiments showed relatively little difference between them, with
mostly either the reverse-Halton or the Sobol sequence yielding the best results.
As an illustration, we show this similarity in the first example (more numerical
results with the other sequences can be found in the technical report [3]); in the
remaining problems we only show results with the Sobol sequence.

3. QMC with optimal lattice rules “Optimal” lattice rules can be defined using
the Fourier or the ANOVA coefficients of the integrands; these parameters are, of
course, as hard to compute as numerical integration, and are impossible to even
estimate with any reasonable accuracy in stochastic programming, because the
integrands change with the decision variables in every iteration of an optimization
method. However, it has been reported that defining optimality of lattice rules with
respect to suitable surrogate “merit functions” provide lattices that perform well
in practical numerical integration [23].

There are still a number of merit functions to choose from and various parameters
to tweak to find the optimal lattice parameters with respect to each merit function.
The software LatticeBuilder [22] contains various state-of-the-art algorithms for the
efficient optimization of rank-one lattice rules with respect to a variety of weight
functions and merit functions. We used this software, with settings suggested by its
authors in private communication, to generate lattice rules specifically tailored to the
smooth problems considered in this section.
For low-dimensional problems (n < 10) we used exhaustive search over the lattices’
generating vector space tofind the best possible lattice. In higher dimensions this is pro-
hibitively expensive, hence we resorted to the fast CBC (component-by-component)
algorithm, also implemented in LatticeBuilder, designed for coordinate-symmetric
merit functions to find an approximately optimal lattice. This is appropriate since the
variables in all of our synthetic problems always play a similar role.
Lattice rules are primarily intended to be used for periodic integrands; for general
integrands various periodization strategies can be used to improve performance. We
employed the “baker’s transformation” (also known as tent transformation), as it is
both easily implementable, and can be applied to every integrand.

In our experiments we used the GKP univariate quadrature rules to build sparse grid
formulas for the uniform distribution, and analogous Patterson-type nested quadrature
rules for non-uniform distributions (recall Sect. 2.4). The code to generate multivariate
scenarios from Smoljak sparse grid points was written in Matlab; the approximate
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Table 2 Mean returns of assets
in Example 2; target return is
R = 0.011

Instrument Mean return

S & P 0.0101110

Gov bond 0.0043532

Small cap 0.0137058

Table 3 Covariance matrix of
assets in Example 2

S & P Gov bond Small cap

S & P 0.00324625 0.00022983 0.00420395

Gov bond 0.00022983 0.00049937 0.00019247

Small cap 0.00420395 0.00019247 0.00764097

problems were solved with an SQP algorithm implemented in Matlab’s fmincon
solver.

After the detailed description of the individual experiments in the next section, the
results are summarized in Sect. 4.3.

4.1 Markowitz model

This instance of the classic Markowitz model was used in [37] and [39] for comparing
QMC scenario generation methods with the MCmethod. There are three instruments:
S&P 500, a portfolio of long-termU.S. government bonds, and a portfolio of small-cap
stocks, the returns are modeled by a joint normal distribution. The problem data is
given in Tables 2 and 3.

Example 2 (Markowitz model) Let x = [x1, . . . , xn] be the amount invested in n
financial instruments, xi ≥ 0 and

∑n
i=1 xi = 1. Let ξ = [ξ1, . . . , ξn] be the random

returns of these instruments, p(ξ) be the density of the joint distribution of the rates of
return, which is a multinormal distribution with mean vector m and covariance matrix
V ∈ R

n×n . We require that the mean return of the portfolio x be at least R, and we
wish to minimize the variance of the portfolio. The problem can be formulated as
follows:

min
x

∫
Rn

(
ξ T x − mT x

)2
p(ξ)dξ

s.t.‖x‖1 ≤ 1,mT x ≥ R, x ≥ 0.

We can approximate the above problem by a formulation with finitely many sce-
narios:

min
x

K∑
k=1

wk

(
ξ Tk x − mT x

)2

s.t.‖x‖1 ≤ 1,mT x ≥ R, x ≥ 0,

using scenarios xk and weights wk .
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Table 4 Approximate objective value of the Markowitz model (·10−3)

Sparse grid QMC MC

# Nodes GKP Genz–Keister Sobol Nieder. Halton RevHalton Lattice Mean

1 0 0 0 0.115 0.085 0.085 0 2.5546

7 3.091 3.785 1.099 17.47 1.695 2.253 2.2456 3.8511

31 3.674 2.990 6.398 2.875 3.346 3.4612 3.3804

111 3.769 3.398 4.499 3.408 3.543 4.0823 3.8163

351 3.783 3.641 4.023 3.640 3.683 3.8337 3.7725

1023 3.785 3.726 3.840 3.737 3.737 3.671 3.8138

2815 3.785 3.760 3.802 3.759 3.767 3.7915 3.7926

The true optimal objective value is ≈ 3.785 × 10−3; bold digits are correct. Both flavors of sparse grid
outperform the remaining methods

Sample Size

×10−3

111 351 1023 2815
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0

GKP Sparse Grid
Sobol
Lattice
MC

Fig. 2 Approximated objective value of the Markowitz Model. The y-axis shows the optimal values from
the approximated model for different scenario generation methods for sample size (x-axis) from 1 to 2815.
The true optimal value is ≈ 0.003785

The optimal objective function value can also be computed by solving an equivalent
(deterministic) quadratic programming problem; the optimal value is approximately
0.003785.

The objective values of the approximated models are shown in Table 4 and plotted
in Fig. 2. (To improve the legibility of the figure, only one of the low-discrepancy
sequences is shown, along with MC results and the sparse grid formula that exhibits
slower convergence, comparing our worst results to MC and QMC.) Since the inte-
grand is a quadratic polynomial, approximation using a sparse grid formulawith degree
of polynomial exactness greater than one (for integration with respect to the normal
distribution) is guaranteed to give the exact optimum. For example, the convergence
of the sparse grid method using the Genz–Keister quadrature rule is finite: we obtain
the exact objective function value with seven scenarios, corresponding to the control
parameter value q = 2 in the sparse grid construction (6), which yields an exact
formula for polynomial integrands of degree up to 3. (The formula corresponding to
q = 1 is exact only for polynomials of degree one.)

We can also use the sparse grid method with GKP nodes transformed using the
diffeomorphism mapping uniformly distributed random variables to normally distrib-
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uted ones. Of course, the convergence for such formulas is not finite. Nevertheless, we
obtain 3 correct significant digits with 351 samples, and 4 correct significant digits for
sample sizes exceeding 1023; these correspond to q = 5 and q = 6 in (6). Using the
GKP formulas requires care: the diffeomorphism required to transform the uniform
distribution to normal does not have bounded derivatives, thus the convergence results
do not apply. One possibility to resolve this problem is to replace the normal distri-
bution by a sufficiently truncated one, and use the corresponding diffeomorphism. A
similar problem arises with QMC methods: one has to ensure (by a random shift, for
example) that none of the scenarios lie on the boundary of [0, 1]n . This problem does
not arise with sparse grid using the Genz–Keister rule. In general, the boundedness
assumption is not needed when the underlying distribution is an affine transformation
of a product of univariate distributions, and the sparse grid formula is obtained using
an affine transformation g of a sparse grid formula that is built with the univariate
densities used as weight functions.

We also generated QMC approximations with the algorithms listed in the beginning
of the section; these results are also reported in Table 4. The performance of the low-
discrepancy sequences are comparable to each other (except that the Niederreiter
sequence is particularly weak with less than 300 points). The optimal lattice rule,
obtained using exhaustive search (carried out using LatticeBuilder) to minimize a
projection-dependent merit function based on square discrepancy [22], does not yield
any improvement over the classic low-discrepancy sequences in this problem.

To confirm the convergence ofQMC for this problem,we generated approximations
with up to 1,000,000 scenarios using the Sobol sequence and the optimal lattice rule.
We observed steady but slow convergence. However, the fourth correct significant
digit was obtained only with over 100,000 scenarios in both cases.

It is reasonable to conclude that in this example the sparse grid method achieved
much faster convergence than the scenarios generated using popular QMC sequences.

4.2 Utility maximization models

In this section we examine the hypothesis that for sufficiently smooth (but not nec-
essarily polynomial) integrands, sparse grid formulas with high degree of exactness
provide a good approximation of the optimal objective function values of stochastic
programs even for high-dimensional problems, regardless of the shape of the under-
lying distribution. For this purpose, we considered utility maximization examples of
the form

max
x

∫
Ξ

u
(
xTξ

)
p(ξ)dξ s.t. ‖x‖1 ≤ 1, x ≥ 0, (17)

for different utility functions u and density functions p.
The three utility functions considered were:

u1(t) = − exp(t) (exponential utility), (18a)

u2(t) = log(1 + t) (logarithmic utility), and (18b)

u3(t) = (1 + t)1/2 (power utility). (18c)
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Fig. 3 Shapes of Beta (α, β) distributions for (α, β) ∈ {1/2, 1, 3/2, 5}2

The probability densities considered were product Beta distributions, obtained by
taking the product of univariate Beta(α, β) distributions with α, β ∈ {1/2, 1, 3/2, 5}
(see Fig. 3. The motivation behind this choice is that it allows us to experiment with
distributions of various shapes, and also to transform the problem into product form,
for which formulas with different degrees of polynomial exactness can be created
and compared. We compared both variants of the sparse grid method: we used GKP
formulas transformedwith the appropriate diffeomorphism to scenarios for integration
with respect to the product Beta distribution (or transformed GKP formulas for short)
and sparse grid formulas using the Patterson-type quadrature rules of Sect. 2.4 derived
for the Beta distribution (or Patterson-type sparse grid for short).

4.2.1 Exponential utility

Table 5 shows the (estimated) optimal objective function values computed with dif-
ferent scenario generation techniques for the 100-dimensional exponential utility
maximization (using u1 from (18) in (17)), where p is the probability distribution
function of the 100-fold product of the Beta(1/2,1/2) distribution (shown in the upper
left corner of Fig. 3). In this example the optimal objective function value can be com-
puted relatively easily, because the objective function is the product of one-dimensional
integrals; the optimal value is approximately 0.60690986. The table shows great dif-
ference in the rate of convergence of the different scenario generation methods. MC
integration achieves only 4 correct significant digits using 106 scenarios, QMC inte-
gration with the Sobol sequence gets 6 digits with about 2× 105 scenarios, but only 3
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Table 5 Results from a 100-dimensional exponential utility maximization example using Beta distribu-
tions; comparison of Monte Carlo, two quasi-Monte Carlo methods, and the two Sparse Grid methods

# nodes MC QMC (Sobol) QMC (lattice) SG (GKP) Patterson-type SG

201 0.5861458741 0.6057992465 0.60960463896 0.6069012301 0.6069097420

20401 0.6059951776 0.605986365 0.60693318101 0.6069098645 0.6069098767

200000 0.606784018 0.6069097597 0.60691252536

1000000 0.6069217022 0.6069097569 0.60691066152

The true optimal value is ≈ 0.60690986; bold digits are correct. Both flavors of sparse grid outperform the
remaining methods

digits with 2×104 scenarios. The optimal rank-one lattice rule achieves 4 correct digits
with 2×104 scenarios, and one additional digit with 2×105 scnarios. In contrast, the
transformed GKP rule gets 8 digits with 2× 104 scenarios. (See column 4 in Table 5.)
Finally, the Patterson-type sparse grid achieves 6 correct digits already with 201 sce-
narios. (Column 5.) The latter formula was created using a nested Patterson-type rule
for the Beta(1/2, 1/2) distribution (see Section 2.4).

In summary, to achieve the same accuracy in this example, the sparse grid using
the Patterson-type rule (and which is exact for polynomials) requires an order of
magnitude fewer scenarios than the sparse grid using transformed GKP nodes, which
in turn requires an order of magnitude fewer scenarios than QMC. Monte Carlo is not
competitive with the other three methods.

We repeated the same experiment with all of the 16 distributions shown on Fig. 3,
with the samequalitative results,with the exception of the distributionBeta(1,1),which
is the uniform distribution, hence the two sparse grid formulations are equivalent (and
still outperform MC and QMC); the details are omitted for brevity.

Wealso considered exampleswith less regular distributions, using the samedistribu-
tions fromFig. 3 as components. The underlying 160-dimensional product distribution
has ten components distributed as eachof the distributions shownonFig. 3.Theoptimal
objective function value is approximately 0.403148407; Table 6 shows the approxi-
mate objective function values computed with different techniques using up to half a
million scenarios. The sparse grid formula using the Patterson-type rule achieves the
same precision as QMCwith an order of magnitude fewer points, reaching five correct
digits with only 341 nodes. MC performs considerably worse than both of them, it
needs about 500,000 scenarios to get the fourth significant digit correctly. Memory
constraints prevented the solution of problems with more scenarios.

4.2.2 Logarithmic utility

We repeated the above experiments for the logarithmic utility maximization problem,
that is, plugging u2 from (18) into (17), with the same experimental setup. The results
were qualitatively very similar to those in the previous section; we only present the
detailed results of the 160-dimensional experiment involving the product Beta distri-
bution with various parameters. The optimal objective function value appears to be
approximately −0.646451. The results obtained with different scenario generation
methods are shown in Table 7.
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Table 6 Results from the 160-dimensional exponential utility maximization example using Beta distrib-
utions; comparison of Monte Carlo, two quasi-Monte Carlo methods, and the two Sparse Grid methods

# nodes MC QMC (Sobol) QMC (lattice) SG (GKP) Patterson-type SG

341 0.4020710589 0.4027479863 0.40507651399 0.4007432411 0.4031483327

58331 0.4031793283 0.4031448802 0.40316298189 0.4028398967 0.4031484071

250000 0.4031696956 0.4031478092 0.40315112035

500000 0.4031910684 0.4031483028 0.40315062416

The true optimal value is ≈ 0.403148407; bold digits are correct. Sparse grid built from Patterson-type
quadrature formulas outperforms the remaining methods

Table 7 Results from the 160-dimensional logarithmic utility maximization example using Beta distrib-
utions; comparison of Monte Carlo, two quasi-Monte Carlo methods, and the two Sparse Grid methods

# nodes MC QMC (Sobol) QMC (lattice) SG (GKP) Patterson-type SG

341 −0.6497278246 −0.6470413764 −0.6444548980 −0.6493579499 −0.6464513847

58331 −0.6465609053 −0.6464554973 −0.6464367282 −0.6467992796 −0.6464512999

250000 −0.6464336612 −0.6464519084 −0.6464483171

500000 −0.6464842164 −0.6464513709 −0.6464492263

The true optimal value is ≈ −0.646451; bold digits are correct. Sparse grid built from Patterson-type
quadrature formulas outperforms the remaining methods

The results are essentially the same as in the exponential utility maximization
problem. Sparse grid with the Patterson-type quadrature rule gets 6 correct significant
digits with 341 nodes, whereas QMC requires about 500,000 nodes for the same
accuracy.

4.2.3 Power utility

We repeated the above experiments for the power utilitymaximization problem, that is,
plugging u3 from (18) into (17),with the same experimental setup. The results obtained
with different scenario generation methods are shown in Table 8; they are very similar

Table 8 Results from the 160-dimensional power utility maximization example using Beta distributions;
comparison of Monte Carlo, two quasi-Monte Carlo methods, and the two Sparse Grid methods

# nodes MC QMC (Sobol) QMC (lattice) SG (GKP) Patterson-type SG

341 −1.3863232853 −1.3821077423 −1.3805140863 −1.3835622039 −1.3816379583

58331 −1.3817632120 −1.3816406975 −1.3816300171 −1.3800861876 −1.3816379399

250000 −1.3816977241 −1.3816382958 −1.3816362062

500000 −1.3816363645 −1.3816379652 −1.3816368776

The true optimal value is ≈ −1.381638; bold digits are correct. Sparse grid built from Patterson-type
quadrature formulas outperforms the remaining methods
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to the results of the previous experiments. This was the easiest objective for all the
methods, but the relative difference between the performance of the different methods
remained the same. MC needs over 50,000 scenarios to get to 5 digits of accuracy,
the sixth digit is reached with 500,000 scenarios. QMC gets one additional digit of
precision with the same effort. Sparse grid with the Patterson-type quadrature rule
requires only 341 scenarios for the same accuracy as QMC with 500,000 scenarios.

4.3 Summary of numerical results

The numerical experiments provide a strong indication of both the strengths and lim-
itations of sparse grid scenario generation in stochastic optimization. For problems
where the underlying distribution can be transformed affinely to a product of univari-
ate distributions, sparse grid scenarios generated using Patterson-type formulas are
superior to standard MC and QMC scenario generation methods, including carefully
tuned lattice methods.

Sparse grid scenario generation also scales well: for most common distributions
2n + 1 scenarios are sufficient to achieve degree 3 of polynomial exactness. O(n2),
respectively O(n3), scenarios provide degree 5, respectively degree 7, of polynomial
exactness, which is sufficient for the good approximation of smooth functions, even in
optimization problems with hundreds (and possibly thousands) of random variables.
When the integrand can be expressed as the product of a polynomial and a proba-
bility density function, approximation with sparse grid scenarios provides the exact
optimum, which cannot be matched by other scenario generation methods.

The generation of the sparse grid formulas (even those with millions of nodes in
thousands of dimensions) is a minimal overhead compared to the optimization step.
The generation of Patterson-type formulas with the method of [24] is also easy, and
needs to be carried out only once for every univariate distribution used. The sizes of
the problems concerned in this paper were only limited by two other factors: available
memory for carrying out the optimization, and the fact that in problemswith thousands
of random variables the true optimal objective value simply cannot be determined up
to reasonable accuracy by alternative methods or statistical bounds, and hence the
numerical comparison of results would be meaningless.

For problems where a general nonlinear diffeomorphism is needed to transform the
problem to one involving a product distribution, the nonlinearity of the transformation
eliminates the polynomial exactness of the formulas. Although the convergence of
the method, as the number of scenarios tends to infinity, is proven in this case, too,
the method did not outperform QMC sampling in the high-dimensional examples,
although in some instances the results were at least comparable.

5 Concluding remarks

Sparse grid scenario generation appears to be a promising alternative to classic QMC
and MC sampling methods, as well as to rank-one lattice rules for the solution of
stochastic optimization problems whenever the integrands in the problem formulation
are sufficiently smooth. The theoretical results on its efficiency, which state that the
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rate of convergence of the optimal objective value is the same as the rate of conver-
gence of sparse grid formulas for integration, is complemented by excellent practical
performance on a variety of utilitymaximization problems, which feature the expected
values of smooth concave utility functions as objectives.

Sparse grid formulas using nested quadrature formulas have fewer scenarios than
those using non-nested, such as Gaussian, formulas. The numerical results also show
the importance of using suitable univariate quadrature formulas, which allow the gen-
eration of scenarios that provide exact approximation for polynomial integrands up to
some degree. Patterson-type quadrature formulas have both of these desirable proper-
ties. Patterson-type sparse grid scenarios provided consistently better approximations
than those obtained through a non-linear (and non-polynomial) transformation of
scenarios generated for the uniform distribution. Scenarios with a given degree of
polynomial exactness are easily generated for distributions that are affine transfor-
mations of a product of univariate distributions—this includes multivariate normal
distributions. We were able to generate univariate quadrature formulas of at least 5
different resolutions (with degrees of exactness exceeding 40) for all the distributions
considered in this paper. The limits of this approach is an open problem; for example
it is not known for what weight functions are there GKP formulas for every resolu-
tion [26]. Note that this is primarily a theoretical gap with no practical consequence:
first, because high-dimensional sparse grids of high resolution have prohibitively large
number of nodes, so one only needs low-resolution univariate formulas, and second,
because Gaussian formulas with arbitrarily high degree of polynomial exactness are
available for every univariate distribution, and these can be used even in the absence
of Patterson-type formulas.

It is important to note that to obtain the appropriate univariate quadrature formulas
and the sparse grid scenarios, one does not need exact distributional information, it
is sufficient to know the moments of the underlying probability distribution up to the
same degree as the degree of exactness of the sought sparse grid formula.

The sparse grid method also scales well. The scenarios can be generated quickly,
and a small number of scenarios achieves a given low degree of polynomial exactness:
O(n) scenarios give polynomial exactness of degree 3 for n random variables; O(n2)
scenarios provide exactness of degree 5, and O(n3) scenarios provide degree 7 poly-
nomial exactness. The only limiting factors in the sizes of the problems considered in
the numerical experiments section were the size of the memory of the computer used
for these experiments, and the fact that none of the alternative methods provided fast
enough convergence to the optimum that the Patterson-type sparse grid seemed to have
converged to—so our results for the higher-dimensional problems simply could not be
validated using alternative methods. Upon submission of the manuscript, an anony-
mous referee pointed us to some very recent theoretical results on the intractability of
the space Wr

n for numerical integration [17]. The stark contrast between theory and
practice is perhaps worthy of further investigation.

A couple of questions remain open, and shall be the subject of further study. The
most important one concernsmulti-stage problems.Thefirst stage objective function of
a multi-stage stochastic programming problem is typically the integral of a piecewise
smooth, but not necessarily differentiable, convex function. The sparse grid approach is
applicable in principle formany such problems (as long as the integrands involved have
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weak derivatives), but the practical rate of convergence may be slow, and the negative
weights in the sparse grid formulas might make the approximation of the convex
problems non-convex. While this did not result in any problems in the experiments
presented in the paper, a theoretically satisfying resolution of this issue is an important
topic of future research.
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4. Consigli, G., Dupačová, J., Wallace, S.: Generating scenarios for multistage stochastic programs. Ann.
Oper. Res. 100, 25–53 (2000)

5. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Academic Press, San Diego (1975)
6. Dempster, M.A.H., Thompson, R.T.: EVPI-based importance sampling solution procedure for multi-

stage stochastic linear programming on parallel MIMD architectures. Ann. Oper. Res. 90, 161–184
(1999)

7. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Cambridge University Press, Cambridge
(2010)

8. Donohue, C.: Stochastic network programming and the dynamic vehicle allocation problem. Ph.D.
thesis, The University of Michigan, Ann Arbor (1996)

9. Donohue, C.J., Birge, J.R.: The abridged nested decomposition method for multistage stochastic linear
programs with relatively complete recourse. Algorithmic Oper.Res. 1, 20–30 (2006)
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