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Abstract For a risk-averse multistage stochastic optimization problem with a finite
scenario tree, we introduce a new scenario decomposition method and we prove its
convergence. The main idea of the method is to construct a family of risk-neutral
approximations of the problem. The method is applied to a risk-averse inventory and
assembly problem. In addition, we develop a partially regularized bundle method for
nonsmooth optimization.
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1 Introduction

In the last decade the theory of coherent risk measures established itself as an alterna-
tive to expected utility models of risk averse preferences in stochastic optimization.
This theory was initiated in [1,3] and further developed in numerous publications
(see, e.g., [9,10,21,26,27] and the references therein). Recently, increased attention
is paid to dynamic measures of risk, which allow for risk-averse evaluation of streams
of future costs or rewards (see, e.g., [2,7,11,18,20,26,28,30]).

When used in stochastic optimization models, dynamic risk measures lead to a
new class of problems, which are significantly more complex than their risk-neutral
counterparts (see [27–29,31]). Decomposition, an established and efficient approach
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to risk-neutral multistage stochastic optimization problems (see [6,13,19,23] and the
references therein), cannot be directly applied to risk-averse models. With dynamic
risk measures, the main feature facilitating decomposition, the integral form of the
objective function, is absent. Our main objective is to overcome this difficulty by
exploiting specific structure of dynamic risk measures, and to develop new decom-
position methods that extend the ideas of earlier approaches to risk-neutral problems.
We initiated this research in [16], where we developed risk-averse counterparts of the
primal (Benders-type) decomposition methods.

In this paper we develop generalizations of scenario decomposition methods, in
the spirit of [17]. The key to success is the use of dual properties of dynamic measures
of risk to construct a family of risk-neutral approximations of the problem. In sections
2 and 3 we formally define a multistage risk-averse stochastic optimization problem
and we discuss its properties. Section 4 discusses nonanticipativity constraints. In sec-
tion 5 we advance the duality theory of dynamic measures of risk, by identifying the
properties that are essential for our decomposition approach. In section 6 we present
the main idea of our new decomposition methods. In section 7 we analyze properties
of the master (coordination) problem of the method. Finally, section 8 is devoted to
the application of two versions of our methods, with several coordination algorithms,
to an inventory planning and assembly problem. In the development of efficient mas-
ter algorithms we modify the bundle method, to better exploit the specificity of the
problem at hand. The resulting algorithm, which we call the partial bundle method,
is discussed in the appendix.

2 A Multistage Risk-Averse Problem

Let (Ω ,F ,P) be a probability space with a sigma algebra F and probability measure
P. Consider a filtration { /0,Ω} = F1 ⊂F2 ⊂ ·· · ⊂FT = F . A random vector x =
(x1, . . . ,xT ), where each xt has values in Rnt , t = 1, . . . ,T , is called a policy. If each
xt is Ft -measurable, t = 1, . . . ,T , a policy x is called implementable. A policy x is
called feasible, if it satisfies the following conditions:

A1x1 = b1,
B2x1 + A2x2 = b2,

B3x2 + A3x3 = b3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BT xT−1 + AT xT = bT ,
x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, . . . xT ∈ XT .

(1)

In these equations, for every t = 1, . . . ,T , the matrices At of dimensions mt ×nt , the
matrices Bt of dimensions mt × nt−1, and the vectors bt of dimensions mt are Ft -
measurable data. Each set Xt is a random convex and closed polyhedron which is
measurable with respect to Ft (in the sense of measurability of multifunctions; see
[4]).

Suppose ct , t = 1, . . . ,T , is an adapted sequence of random cost vectors, that is,
each ct is Ft -measurable. A policy x results in a cost sequence

Zt = 〈ct ,xt〉, t = 1, . . . ,T. (2)
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Our intention is to formulate and analyze a risk-averse multistage stochastic pro-
gramming problem, to minimize a dynamic measure of risk, ρ(Z1, . . . ,ZT ), over all
implementable and feasible policies x. In order to define the functional ρ(·), we re-
call some basic concepts of the theory of dynamic measures of risk. We follow the
development given in [27–29,31].

Consider vector spaces Zt of Ft -measurable random outcomes. As F1 is trivial,
Z1 = R. For Z,Z′ ∈ ZT we denote by Z � Z′ the pointwise partial order meaning
Zt(ω)≤ Z′t(ω) for a.e. ω ∈Ω .

Let 1≤ t ≤ T −1. A coherent conditional risk measure is a function ρt : Zt+1→
Zt satisfying the following axioms:

(A1) Convexity: ρt (αZ +(1−α)Z′)� αρt(Z)+(1−α)ρt(Z′), for all Z,Z′ ∈Zt+1
and all α ∈ [0,1];

(A2) Monotonicity: If Z,Z′ ∈Zt+1 and Z � Z′, then ρt(Z)� ρt(Z′);
(A3) Predictable Translation Equivariance: If V ∈ Zt and Z ∈ Zt+1, then ρt(V +

Z) =V +ρt(Z);
(A4) Positive Homogeneity: If γ ≥ 0 and Z ∈Zt+1, then ρ(γZ) = γρ(Z).

We assume that the smaller the realizations of Z, the better; for example Z may rep-
resent a random cost.

An example of coherent conditional risk measure is the conditional mean–upper
semideviation model defined by

ρt(Z) = E[Z|Ft ]+κt E
[(

Z−E[Z|Ft ]
)
+

∣∣Ft

]
, (3)

with an Ft -measurable κt ∈ [0,1]. See [31, page 277] for the details showing that
the mean upper semideviation is a coherent conditional risk measure, and for other
examples of conditional risk measures.

Suppose we observe a random sequence Zt , t = 1, . . . ,T , adapted to the filtration
{Ft}. Its risk can be evaluated by using the following dynamic coherent measure of
risk

ρ1,T (Z1,Z2, . . . ,ZT ) = Z1 +ρ1

(
Z2 +ρ2

(
Z3 + · · ·+ρT−1(ZT ) . . .

))
, (4)

where each ρt : Zt+1 → Zt is a coherent conditional measure of risk. The structure
(??) was postulated in [28] and derived in [25] from abstract principles of monotonic-
ity and time consistency of dynamic risk measures.

Our problem is to minimize (4) with each Zt given by (2), over all implementable
and feasible policies x. In order to complete the problem formulation, we need to
be more specific about the vector spaces Zt , the vector spaces of random vectors in
which the components xt of the policy live, as well as integrability conditions on the
problem data At , Bt , bt and ct , so that Zt ∈ Zt for all t = 1, . . . ,T . In this paper, we
assume that all sigma-algebras are finite and all vector spaces are finite-dimensional.
We discuss it in the next section.
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3 Scenario Trees and Recursive Risk Evaluation

In the finite distribution case, possible realizations of data form a scenario tree. It
has nodes organized in levels which correspond to stages 1, . . . ,T . At level t = 1 we
have only one root node ν = 1. Nodes at levels t = 2, . . . ,T correspond to elementary
events in Ft . Each node ν at level t = 2, . . . ,T is connected to a unique node a(ν)
at level t − 1, called the ancestor node, which corresponds to the elementary event
in Ft−1 that contains the event associated with ν . Thus, every node ν at levels t =
1, . . . ,T −1 is connected to a set C(ν) of nodes at level t +1, called children nodes,
which correspond to elementary events in Ft+1 included in the event corresponding
to ν . We denote by Ωt the set of all nodes at stage t = 1, . . .,T . We have the relations
Ωt+1 = ∪ν∈ΩtC(ν) and C(ν) = {η ∈ Ωt+1 : ν = a(η)}. The sets C(ν) are disjoint,
i.e., C(ν)∩C(ν ′) = /0 if ν 6= ν ′. A scenario is a path s from the root to a node at
the last stage T . By construction, there is one-to-one correspondence between the
scenarios and the set ΩT = Ω . Let S (ν) be the set of scenarios passing through
node ν . These sets satisfy the recursive relation:

S (ν) = {ν}, ν ∈ΩT ,

S (ν) =
⋃

η∈C(ν)

S (η), ν ∈Ωt , t = T −1, . . . ,1.

As the nodes of the tree correspond to events defining nested partitions of Ω , the
measure P can be specified by conditional probabilities:

pνη = P[η |ν ], ν ∈Ωt , η ∈C(ν), t = 1, . . . ,T −1.

Every node ν at level t has a history: the path (ν1, . . . ,νt−1,ν) from the root to ν .
The probability of the node ν is thus the product of the corresponding conditional
probabilities

pν = pν1ν2 pν2ν3 · · · pνt−1ν . (5)

In particular, when t = T , formula (5) describes the probability of a scenario ν ∈ΩT .
For every node ν ∈Ωt , an Ft -measurable random variable Z has identical values

on all scenarios s ∈S (ν). It can, therefore, be equivalently represented as a function
of a node at level Ωt , which we write ZΩt .

Consider a conditional measure of risk ρt(·). Its value is Ft -measurable, and
thus we can consider its representation as a function of a node at level t. It follows
from [28, Thm. 3.2] that for every Ft -measurable nonnegative function Γ a stronger
version of (A4) holds:

Γ ρt(Zt+1) = ρt(Γ Zt+1).

Let ν ∈ Ωt , and let 1ν be the characteristic function of the event ν . Setting Γ = 1ν

in the last equation, for all Zt+1,Wt+1 ∈Zt+1 we obtain

1ν ρt(1ν Zt+1 +(1−1ν)Wt+1) = ρt(1ν Zt+1) = 1ν ρt(1ν Zt+1).

In the last equation we multiplied both sides by 1ν . We see that Wt+1 plays no role
here. The value of ρt(Zt+1) at elementary events associated with node ν depends only
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on the values of ZΩt+1
t+1 at nodes η ∈ C(ν). We denote the vector of these values by

ZC(ν)
t+1 , and we write the conditional risk measure equivalently as ρν

t
(
ZC(ν)

t+1

)
.

Let us define the random variables

Vt = ρt

(
Zt+1 +ρt+1

(
Zt+2 + · · ·+ρT−1(ZT ) . . .

))
, t = 1, . . . ,T. (6)

They are Ft -measurable, and thus we only need to consider their values V ν
t associ-

ated with scenarios s ∈S (ν). It follows that the value of the measure of risk (4) can
be written on the scenario tree in a recursive manner:

ρ1,T (Z1,Z2, . . . ,ZT ) = Z1 +V 1
1 , (7)

V ν
t = ρ

ν
t
(
ZC(ν)

t+1 +VC(ν)
t+1

)
, ν ∈Ωt , t = 1, . . . ,T. (8)

4 Nonanticipativity Constraints

A standard approach to multistage stochastic programming is based on scenario de-
composition. With every scenario s in the tree, we associate a sequence of decision
vectors

xs = (xs
1, . . . ,x

s
T ), s ∈Ω .

Such a collection of sequences forms a policy which is not necessarily implementable,
unless it satisfies a certain linear equation, called the nonanticipativity constraint. It
requires that the process x be adapted to the filtration {Ft}. Abstractly, we can write

xt = E
[
xt |Ft

]
, t = 1, . . . ,T −1. (9)

For the scenario model, the nonanticipativity constraint can be written as a system of
linear equations at the nodes of the tree. For every node ν at level t = 1, . . . ,T −1 the
values xs

t should be identical for all s ∈S (ν). Direct specification of (9) yields

xs
t =E

[
xt |S (ν)

]
=

∑ω∈S (ν) pω xω
t

∑ω∈S (ν) pω

, s∈S (ν), ν ∈Ωt , t = 1, . . . ,T−1.

(10)
Other constraints of problem (1)-(2)-(3) decompose by scenario:

x ∈X = X 1×·· ·×X |Ω |, (11)

where for each s ∈Ω we have

X s =
{

x ∈ X s
1×·· ·×X s

T : Bs
t x

s
t−1 +As

t x
s
t = bs

t , t = 1, . . . ,T
}
. (12)

In (12) the symbols As
t , Bs

t , bs
t , and X s

t denote realizations of problem data at stage t
in scenario s, and the term Bs

t x
s
t−1 is omitted for t = 1.

In risk-neutral multistage stochastic programming, we can write the correspond-
ing optimization problem:

min ∑
s∈Ω

ps
T

∑
t=1
〈cs

t ,x
s
t 〉

s.t. (10) and (12).

(13)
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Then, Lagrange multipliers λ s
t are associated with the nonanticipativity constraints

(10), and the following Lagrangian function is constructed:

L(x,λ ) = ∑
s∈Ω

ps
T

∑
t=1
〈cs

t ,x
s
t 〉+

T−1

∑
t=1

∑
ν∈Ωt

∑
s∈S (ν)

ps〈
λ

s
t ,x

s
t −E

[
xt |S (ν)

]〉
. (14)

The problem
min
x∈X

L(x,λ )

decomposes into scenario subproblems, one for each s ∈ Ω . We shall not go into
these details here; the reader can find them in [31, Sec. 3.2.4]. The dual problem is to
find the optimal values of Lagrange multipliers associated with (10). It can be solved
by nonsmooth optimization methods or by augmented Lagrangian methods. As the
constraints (10) are redundant, we can restrict the multipliers to the subspace defined
by the equations

E[λt |Ft ] = 0, t = 1, . . . ,T −1. (15)

In the scenario tree case, these conditions translate into

∑
s∈S (ν)

ps
λ

s
t = 0, ν ∈Ωt , t = 1, . . . ,T −1. (16)

Again, the reader is referred to [31, Ch. 3] for the details.
The difficulty with the scenario decomposition in the risk-averse setting is the

definition and nonlinear character of the dynamic risk measure (4). If a policy x is not
implementable, the sequence {Zt} is not adapted to the filtration {Ft} and formula
(4) makes no sense, because of the definition of ρt as a function acting on Ft+1-
measurable random variables. We cannot just substitute the dynamic risk measure for
the objective function in (13).

5 Transition Multikernels and Their Compositions

We first recall the dual representation of conditional measures of risk. Let P(C)
denote the set of probability distributions on a set of nodes C ⊂ Ωt . By [28, Remark
4.3], for every t = 1, . . . ,T −1 and every node ν ∈Ωt there exists a convex closed set
At(ν)⊂P(C(ν)) such that

ρ
ν
t
(
ZC(ν)

t+1

)
= max

µ∈At (ν)

〈
µ,ZC(ν)

t+1

〉
. (17)

In fact, At(ν) = ∂ρν
t
(
0
)
.

We shall call a mapping K : Ωt⇒P(Ωt+1) a transition multikernel. It is convex,
if for all ν ∈Ωt the set K (ν) is convex. It is closed, if for all ν ∈Ωt the set K (ν) is
closed. The transition multikernels At associated with the conditional risk measures
ρt(·) are convex and closed, as subdifferentials of convex functions ρν

t (·) at 0, ν ∈Ωt .
They also satisfy the conditions

At(ν)⊂P(C(ν)), ∀ν ∈Ωt . (18)
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For t = 1 there is only one node ν = 1 ∈Ω1, and thus A1 is simply a set probability
distributions on Ω2. If a kernel µt is a selection of At , that is, µt(ν) ∈ At(ν) for all
ν ∈ Ωt , we shall simply write µt ∈At . The value of µ(ν) at an node η ∈C(ν) will
be written as µ(ν ,η).

Compositions of transition multikernels are germane for our analysis. Let us start
from a composition of a measure qt ∈P(Ωt) with a kernel µt ∈ At It is a measure
on Ωt+1 given by the following relations:

(µt ◦qt)(η) = qt(a(η))µt(a(η),η), η ∈Ωt+1; (19)

recall that a(η) is the ancestor of η . If we have a set of probability distributions
Qt ⊂P(Ωt) and a transition multikernel At satisfying (18), we can define their
composition At ◦Qt as the following set of probability distributions on Ωt+1:

At ◦Qt =
{

µt ◦qt : qt ∈ Qt , µt ∈At
}
. (20)

Lemma 1 Suppose Qt is a convex and compact set of probability measures on Ωt
and a transition multikernel At satisfies (18) and is convex and compact. Then the set
Qt+1 = At ◦Qt is convex and compact.

Proof To prove convexity, let qk
t+1(η) = qk

t (a(η))µk
t (η), with µk

t ∈At , qk
t ∈Qt , k =

1,2, and consider their convex combination,

qt+1 = αq1
t+1 +(1−α)q2

t+1, α ∈ (0,1).

Define qt = αq1
t +(1−α)q2

t . By the convexity of Qt , we have qt ∈ Qt , and thus the
set At ◦{qt} is included in Qt+1. To show that qt+1 ∈Qt+1, it is sufficient to prove that
qt+1 ∈At ◦{qt}. This amounts to verifying for all η ∈Ωt+1 the following relation:

αq1
t (a(η))µ1

t (η)+(1−α)q2
t (a(η))µ2

t (η) ∈ qt(a(η))At(a(η)). (21)

Let η ∈Ωt+1 and ν = a(η). Observe that q1
t (ν)≥ 0 and q2

t (ν)≥ 0. If qt(ν) = 0, we
must have q1

t (ν) = q2
t (ν) = 0 and (21) is trivial. It remains to consider the case of

qt(ν)> 0. Define

β (ν) =
αq1

t (ν)

qt(ν)
.

By the definition of qt , β (ν) ∈ [0,1]. The left hand side of (21) can be written as
follows

αq1
t (ν)µ

1
t (η)+(1−α)q2

t (ν)µ
2
t (η) = qt(ν)

(
β (ν)µ1

t (η)+(1−β (ν))µ2
t (η)

)
.

Due to the convexity of At , the right hand side is an element of At ◦ {qt}, which
proves (21).

The compactness of Qt+1 follows from the compactness of Qt and At . ut

We can now prove a useful dual representation of a dynamic measure of risk.
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Theorem 1 Suppose a dynamic risk measure ρ(·) is given by (4) with conditional
risk measures ρt(·) satisfying conditions (A1)–(A4). Then for every adapted sequence
Z1, . . . ,ZT we have the relation

ρ(Z1, . . . ,ZT ) = max
qT∈QT

〈
qT ,Z1 +Z2 + · · ·+ZT

〉
, (22)

where
QT = AT−1 ◦ . . .A2 ◦A1 (23)

is a convex and closed set of probability measures on Ω .

Proof Recursive composition of transition multikernels µt yields a sequence of sets
of measures:

Qt+1 = At ◦Qt , t = 1, . . . ,T −1, (24)
with Q1 = {1}. Each Qt is a set of probability measures on Ωt . Lemma 1 implies that
they are all convex and compact.

The multikernel representation (17) allows us to rewrite the definition of a dy-
namic risk measure (4) as follows:

ρ(Z1, . . . ,ZT ) = Z1 + max
µ1∈A1

(〈
µ1,Z

Ω2
2

〉
+ max

µ2∈A2

(〈
µ2 ◦µ1,Z

Ω3
3

〉
+ . . .

· · ·+ max
µT−1∈AT−1

〈
µT−1 ◦ · · · ◦µ2 ◦µ1,ZT

〉
· · ·
))

. (25)

All the maximum operations can be put at the beginning, and we obtain:

ρ(Z1, . . . ,ZT ) = Z1 + max
µt∈At

t=1,...,T−1

(〈
µ1,Z

Ω2
2

〉
+
〈
µ2 ◦µ1,Z

Ω3
3

〉
+ . . .

· · ·+
〈
µT−1 ◦ · · · ◦µ2 ◦µ1,ZT

〉)
. (26)

Let qt = µt−1 ◦ · · · ◦ µ2 ◦ µ1, t = 2, . . . ,T . Each of them is an element of the corre-
sponding set Qt . Consider the product〈

qt ,Z
Ωt
t
〉
= ∑

ν∈Ωt

qt(ν)Z
Ωt
t (ν).

Suppose µt ∈At and ν ∈Ωt . Then µt(ν) is a probability distribution on C(ν). Since
Zt is Ft -measurable, ZΩt+1

t has identical values on the nodes η ∈C(ν). Therefore,

ZΩt
t (ν) = 〈µt(ν),Z

Ωt+1
t 〉.

Recalling the definition (19), we conclude that〈
qt ,Z

Ωt
t
〉
=
〈
µt ◦qt ,Z

Ωt+1
t

〉
=
〈
qt+1,Z

Ωt+1
t

〉
.

Applying this relation recursively to all terms of (26), we obtain the identity

ρ(Z1, . . . ,ZT ) = max
µt∈At

t=1,...,T−1

〈
µT−1 ◦ · · · ◦µ2 ◦µ1,Z1 +Z2 + · · ·+ZT

〉
= max

qT∈QT

〈
qT ,Z1 +Z2 + · · ·+ZT

〉
,

(27)

as postulated. ut



9

6 Duality and Decomposition

An advantage of formula (22) is that its right hand side remains well-defined also
for sequences {Zt}, which are not adapted to the filtration {Ft}. This allows for the
development of the corresponding duality theory and decomposition.

Consider the extended problem formulation corresponding to to the risk-neutral
formulation (13). The nonanticipativity constraints (10) can be compactly written as
a system of linear equations x = Πx, where Π is the projection on the implementable
subspace:

Π(x1, . . . ,xT ) =
(
Ex1,E[x2|F2], . . . ,E[xT−1|FT−1],xT

)
.

Employing the dual representation of the dynamic measure of risk ρ(·), we obtain
the following problem:

min
x

max
q∈QT

∑
s∈Ω

qs〈cs,xs〉 (28)

s.t. x−Πx = 0, (29)
xs ∈X s, s ∈Ω . (30)

We write 〈cs,xs〉 for the sum ∑
T
t=1〈cs

t ,x
s
t 〉. By Theorem 1, this problem is equivalent

to the problem of minimizing (4), subject to (2) and (1).
We now develop duality relations for problem (28)–(30), extending to the risk-

averse case the approach outlined in [31, Sec. 3.2.4]. After associating Lagrange
multipliers λ with the nonanticipativity constraints (29), we obtain the following La-
grangian function:

L(x,λ ) = max
q∈QT

∑
s∈Ω

(qs〈cs,xs〉+ ps〈λ s,xs−Π
sx〉) .

It is sufficient to consider λ such that Πλ = 0, because any shift of λ by by a vector
in the range of Π does not affect the last term. More specifically, we require that

∑
s∈S (ν)

ps
λ

s
t = 0, ν ∈Ωt , t = 1, . . . ,T −1. (31)

Under this condition, the Lagrangian simplifies:

L(x,λ ) = max
q∈QT

∑
s∈Ω

(qs〈cs,xs〉+ ps〈λ s,xs〉) . (32)

The dual function is defined as follows:

LD(λ ) = inf
x∈X

L(x,λ ),

and the dual problem is to find

max
Πλ=0

inf
x∈X

max
q∈QT

∑
s∈Ω

(qs〈cs,xs〉+ ps〈λ s,xs〉) . (33)
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The function under the “max− inf−max” operations is bilinear in x and q, the set QT
is convex and compact, and the set X is convex. Therefore, we can interchange the
inner “inf” and “max” operations to write the dual problem as follows:

max
Πλ=0

max
q∈QT

[
inf

x∈X ∑
s∈Ω

(qs〈cs,xs〉+ ps〈λ s,xs〉)

]
. (34)

It is convenient to replace the measure q with its density δ with respect to p. Clearly,
δ lives in a convex compact set

∆ =
{

δ ∈R|Ω | :
(

ps
δ

s)
s∈Ω
∈ QT

}
. (35)

The dual problem takes on the form:

max
Πλ=0

max
δ∈∆

[
inf

x∈X ∑
s∈Ω

ps (δ s〈cs,xs〉+ 〈λ s,xs〉)

]
. (36)

The problem in brackets has the same structure as in the risk-neutral case, but with
scenario costs re-scaled by δ s.

Theorem 2 If Problem (28)-(30) has an optimal solution then the dual problem (36)
has an optimal solution, and the optimal values of both problems coincide.

The theorem follows from the duality theory in convex programming (see, e.g., [24,
Thms. 4.7 and 4.8]). No constraint qualification is needed, because the constraints
(29) are linear and the sets X s, s ∈Ω , are convex closed polyhedra.

Observe that the inner problem (in brackets) in (36) decomposes into individual
scenario subproblems

min
xs∈X s

〈δ scs +λ
s,xs〉, s ∈Ω . (37)

These subproblems can be readily solved by specialized techniques, exploiting the
structure of the deterministic version of the dynamic problem in question.

Our approach can be interpreted as a construction of a family of risk-neutral ap-
proximations of the problem, one for each δ ∈ ∆ .

7 Master Problem

Let us denote by Ψ s(λ s,δ s) the optimal value of problem (37). The main difficulty is
to solve the dual problem:

max
Πλ=0

max
δ∈∆

∑
s∈Ω

ps
Ψ

s(λ s,δ s). (38)

As each Ls(·, ·) is concave and piecewise-linear, problem (38) is a convex program-
ming problem.
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The optimal value of the scenario subproblem (37) is a composition of the linear
map (λ s,δ s) 7→ δ scs + λ s with the support function of the set Xs. Using rules of
subdifferential calculus we obtain

∂Ψ
s(λ s,δ s) =

{(
xs,〈cs,xs〉

)
: xs is a solution of (37)

}
. (39)

As the objective of (38),

D(λ ,δ ) = ∑
s∈Ω

ps
Ψ

s(λ s,δ s),

is a sum of terms that have no variables in common, we get

∂D(λ ,δ ) = ∂Ψ
1(λ 1,δ 1)×·· ·×∂Ψ

|Ω |(λ |Ω |,δ |Ω |). (40)

Therefore, to calculate a subgradient at a point (λ ,δ ) we need to solve subprob-
lems (37) and apply formula (40). In principle, problem (38) can be solved by any
nonsmooth optimization method. One simple possibility would be the cutting plane
method (see, e.g., [12,24]); another choice is the bundle method (see [12,14,15,24]).

The essence of the bundle method is the application of regularization with respect
to the decision variables, which are in our case λ and δ , similarly to the proximal
point method. This allows to localize the iterations and makes the bundle method
more reliable for problems of higher dimension, where the cutting plane method be-
comes very slow.

Here, the specificity of problem (38) is that regularization is mainly needed for the
nonanticipativity multipliers λ . The densities δ are restricted to live in a compact set
∆ ; in the extreme case of the risk-neutral problem we simply have ∆ = {(1,1, . . . ,1)}.
We therefore propose a partial bundle method, which employs regularization with
respect to the variables λ only. Exactly as the bundle method, it collects for every
scenario s optimal solutions xs j of the scenario subproblems and corresponding solu-
tions (λ s j,δ s j) of the master problem at iterations j ∈ Js. The set Js may be the set of
all previous iterations, or its subset determined by the cut selection rules of the bundle
method. The method also has the regularization center λ̄ , which is updated depending
on the success of the current iteration, and uses a regularization coefficient r > 0.

The master problem of the partial bundle method has the following form

max
vs,λ ,δ

∑
s∈Ω

ps
(

vs−
r
2
‖λ s− λ̄

s‖2
)

s.t. vs ≤
〈
δ

s jcs +λ
s j,xs j〉+〈(xs j,〈cs,xs j〉

)
,(λ s,δ s)− (λ s j,δ s j)

〉
,

s ∈Ω , j ∈ Js,

Πλ = 0,
δ ∈ ∆ .

(41)

After its solution, the regularization center λ̄ , the regularization coefficient r, and the
sets of cuts are updated in exactly the same way as in the bundle method (see [15,
24]). Convergence analysis of the partial bundle method is nontrivial and lengthy.
As these details would take us far away from the main topic of our presentation; we
outline the analysis in the Appendix, for the basic problem of minimizing a convex
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function of two decision vectors, without the complications of dealing with the sum
of functions, over s ∈ Ω . Our master problem (41) uses disaggregated subgradients,
as in [5,22]: each vs is an upper bound on the corresponding function Ψ s(λ s,δ s). The
interested readers are referred to [8].

8 Numerical Illustration

8.1 The Model

Our aim is to illustrate the scenario decomposition approach and the methods dis-
cussed in previous sections on the following inventory and assembly problem. A
product line consists of several different models. Each model has its own list of parts,
but different models may have some parts in common. At the first stage, we decide
how many units of each part will be bought. After the purchase is done, the actual
demand for the different models is revealed. Then we decide how many units of each
model will be produced, while keeping within the constraints defined by the numbers
of parts available.

There is a penalty for each unit of unsatisfied demand and there is a “storage cost”
associated to each unit that is produced over the demand. The storage cost involves
product depreciation and is a random variable which will become known only after
the second stage decisions have been made. It is assumed that all the products will
eventually be sold and the storage cost is paid only once.

Let zi be the number of parts of type i that will be purchased and let u j be the
number of units of model j that will be produced. Let M be the integer nonnegative
matrix that describes the parts needed to assemble each different model, i.e. Mu is
the vector of parts necessary to assemble the vector of models u. Random demand
for product j is denoted by D j and random unit storage cost is denoted by H j. Other
problem parameters, which are deterministic, are: r j - selling price of product j, ci -
cost of part i, l j - penalty for uncovered demand of product j.

Our goal is to minimize the negative of the profit, which is composed of three
parts: Z1 = ∑i cizi, Z2 =−∑ j r ju j, and Z3 = ∑ j [l j(D j−u j)++H j(u j−D j)+]. Since
the components Z2 and Z3 are random, and our decisions u depend on the demand
vector observed, we express the production problem as a three stage risk-averse opti-
mization problem. In fact, there are no third stage decisions: only random cost evalu-
ation.

At stages 1 and 2 we use the conditional mean–semideviation risk measures of
the first order of the form (3) with coefficients κ1 ∈ [0,1] and κ2 ∈ [0,1], respectively

Assume that there are N possible demand realizations each occurring with cor-
responding probability ps. Moreover, suppose that each demand realization s there
are Ns possible storage cost realizations each occurring with probability psη , η =
1, . . . ,Ns. For given decisions us at node s, the cost equals:

Zs
2 +Z3 =−〈r,us〉+ 〈l,ws〉+ 〈Hsη ,vs〉,

where ws and vs are the under and over production due to decision ys at node s.
In this case a straightforward linear programming formulation of the problem is the
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following:

min
z,u,w,v

ρ,σ ,ζ ,γ

〈c,z〉+
N

∑
s=1

psρ
s +κ1

N

∑
s=1

psσ
s

s.t. ρ
s =

Ns

∑
η=1

psη ζ
sη +κ2

Ns

∑
η=1

psη γ
sη ,

σ
s ≥ ρ

s− ∑
k∈Ω2

pkρ
k, σ

s ≥ 0,

ζ
sη =−〈r,us〉+ 〈l,ws〉+ 〈Hsη ,vs〉,

γ
sη ≥ ζ

sη −
Ns

∑
k=1

pskζ
sk, γ

sη ≥ 0,

Mus− z≤ 0, us ≥ 0,
ws ≥ Ds−us, ws ≥ 0,
vs ≥ us−Ds, vs ≥ 0,
for all s = 1, . . . ,N and η = 1, . . . ,Ns.

(42)

In the problem above, Ds := (Ds
1, . . . ,D

s
m) is the sth realization of product demands,

and Hsη

i is the storage cost of product i under demand realization s and storage
realization η . The variable ρs represents the value of the conditional risk measure
ρ2(Z2 +Z3) at node s, and the value of the risk measure ρ1(·) is calculated directly in
the objective function. The variables ζ represent cost realizations in the correspond-
ing scenarios. The variables σ and γ represent the upper semideviations of the costs
at stage 1 and 2, respectively.

The size of the linear programming representation of the production problem
shows the importance of developing efficient methods to solve multi stage risk-averse
problems. We applied to our problem the cutting plane, the classical bundle, and the
partial bundle method. Whenever possible, we compared the results obtained by these
methods with the result of solving the linear programming problem (42) directly by a
simplex algorithm. For the scenario decomposition methods, we considered two ver-
sions. One was the full three-stage version, which is most general and applies also to
problems involving decisions at the last stage and general non-polyhedral measures
of risk. Another version was a model with a truncated two-stage tree, in which the
problems at the second stage are risk-averse problems themselves. This was possible
due to the polyhedral structure of the mean–semideviation risk measure and to the
absence of third stage decisions.

8.2 The Partial Bundle Method

To obtain explicitly the master problem of the partial bundle method for our applica-
tion we need to calculate the set ∆ appearing in (41). The structure of the subdiffer-
ential of the mean upper semideviation is well known (see [31] page 278), namely,

∂ρ1(0) =

{
1−1

N

∑
s=1

psτs + τ

∣∣∣∣∣ τ = (τs)
N
s=1 and 0≤ τs ≤ κ1

}
(43)
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and

∂ρ
s
2(0) =

{
1−1

Ns

∑
η=1

psη ιsη + ι
s

∣∣∣∣∣ ι
s = (ιsη)

Ns
η=1 and 0≤ ιsη ≤ κ2

}
, (44)

where 1 is the vector with all entries equal to 1. Let ∂ρ2(0) := ∂ρ1
2 (0)×·· ·×∂ρN

2 (0)

and π = (psη)s∈Ω1,η∈C(s). Then Q2 = A2 ◦A1 = ∂ρ2(0) ◦ ∂ρ1(0) and ∆ =
{

δ :(
psδ s

)N
s=1 ∈ Q2

}
. Thanks to the structure of the subdifferentials (43) and (44) the

set ∆ is polyhedral, and so, ∆ =
{(

δ s
η

)
s=1,...,N,η=1,...,Ns

}
such that

δ
s
η = psη

[
1−

N

∑
k=1

pkτk + τs−
Ns

∑
k=1

pskεsk + εsη

]
0≤ τi ≤ κ1, i = 1, . . . ,N,

0≤ εi j ≤ κ2

(
1−

Ns

∑
k=1

pkτk + τi

)
, i = 1, . . . ,N, j = 1, . . . ,Ns.

The master problem of the partial bundle method for our application is:

max
vs,λ ,δ

N

∑
s=1

ps
(

vs−
r
2
‖λ s− λ̄

s‖2
)

s.t. vs ≤
〈
δ

s jcs +λ
s j,xs j〉+〈(xs j,〈cs,xs j〉

)
,(λ s,δ s)− (λ s j,δ s j)

〉
,

Πλ = 0,

δ
s =

(
psη

[
1−

N

∑
k=1

pkτk + τs−
Ns

∑
k=1

pskεsk + εsη

])Ns

η=1

,

0≤ τs ≤ κ1,

0≤ εsη ≤ κ2

(
1−

Ns

∑
k=1

pkτk + τs

)
, η = 1, . . . ,Ns,

for all j ∈ Js, s = 1, . . . ,N.

(45)

At every iteration j of the partial bundle method the obtained subgradient have the
following form[(

p1z1 j)>, . . . ,(pNzN j)>, p1〈c1,z1 j〉, . . . , pN〈cN ,zN j〉,
(

p1G1y1 j)>, . . . ,(pNGNyN j)>] ,
where xs j := (zs j,ys j) is the optimal solution of subproblem (37) for scenario s at
iteration j with zs j corresponding to the first stage components of xs j, and ys j corre-
sponding to the second and third stage components of xs j. Also, cs is the cost vector
of the first stage scenario s, and Gs is the matrix of second stage scenario costs cor-
responding to the first stage scenario s. In our example cs = c and the rows of Gs are
(gsη

)> =
(

r>, l>,(Hsη)>
)

, for every s = 1, . . . ,N, η = 1, . . . ,Ns.
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After a few algebraic simplifications we derive from (52) the individual scenario
subproblems for each scenario s = 1, . . . ,N,

min
z,u,w,v,ζ

α
s〈cs,z〉+ 〈β s,ζ 〉+ 〈λ s,z〉

s.t. ζ
η =−〈r,u〉+ 〈l,w〉+ 〈Hsη ,v〉, η = 1, . . . ,Ns,

Mu− z≤ 0, u≥ 0,
w≥ Ds−u, w≥ 0,
v≥ u−Ds, v≥ 0,

(46)

where each ys j component of xs j in (45) has been subdivided according to (42), i.e.,
x :=(z,y) :=(z,u,v,w). Similarly, αs,β s are the corresponding z, y components of δ s.

8.3 The Truncated Tree Method

In order to obtain the truncated two-stage tree method we need to find an efficient
way of evaluating the second stage upper semideviation risk measure. Applying (17),
we obtain for every s = 1, . . . ,N,

ρ
s
2(G

sy) = max
δ∈∂ρs

2(0)

Ns

∑
η=1

δη psη g>sη y, (47)

where ∂ρs
2(0) is obtained from (44). Substituting (44) into (47) gives

ρ
s
2(G

sy) = max
ι∈[0,κ2]Ns

Ns

∑
η=1

psη g>sη y+
Ns

∑
η=1

ιη psη

[
g>sη y−

Ns

∑
ζ=1

psζ g>sζ
y

]
. (48)

Therefore ρs
2(G

sy) can be obtained by solving the following linear program

min
Ns

∑
η=1

psη g>sη y+
Ns

∑
η=1

dη

s.t. dη ≥ κ2 psη

[
g>sη y−

Ns

∑
ζ=1

psζ g>sζ
y

]
, η = 1, . . . ,Ns,

dη ≥ 0, η = 1, . . . ,Ns.

(49)

The main idea of the truncated tree method is that instead of minimizing (4)
subject to (1) and (2), we minimize

ρ̃1,3 = Z1 +ρ1

(
Z̃2

)
, (50)

subject to (1) and (2), and
Z̃2 = Z2 +ρ2 (Z3) . (51)

We consider the truncated problem as a two-stage problem and apply to it the same
dual analysis that we did before. At the end we obtain formulation (38) with a few



16

key differences. First, λ and δ refer to the random variables Z1 and Z̃2 and have
no components directly relating to either Z2 or Z3. More importantly, the individual
scenario subproblems should take into consideration the cost of new random variable
Z̃2 and thus (37) is replaced by

min
(zs,ys)∈X s

〈δ scs +λ
s,zs〉+δ

s
ρ

s
2(g
>
s ys), s = 1, . . . ,N, (52)

where zs and ys are the decision variables corresponding to the first and second stage
scenarios. By substituting (49) and (52) into (38) we obtain the following problem
formulation for our application

max
Πλ=0

max
δ∈∆

N

∑
s=1

ps
Ψ

s(λ s,δ s), (53)

where Ψ s(λ s,δ s) is the optimal value of the following problem

min
z,y,d

δ
s

[
(cs)>z+

Ns

∑
η=1

psη g>sη y+
Ns

∑
η=1

dη

]
+(λ s)>z

s. t. dη ≥ κ2 psη

[
g>sη y−

Ns

∑
ζ=1

psζ g>sζ
y

]
, η = 1, . . . ,Ns,

Bs
3z+As

3y = bs
3,

z ∈ X , y≥ 0, d ≥ 0.

(54)

At every iteration j of the truncated tree partial bundle method, the subgradient has
the following form

[(
p1 z1 j)>, . . . ,(pN zN j)>, p1 φs

(
z1 j,y1 j,d1 j) , . . . , pN φs

(
zN, j,yN j,dN j)] , (55)

where for every s = 1, . . . ,N,

φs(z,y,d) = (cs)>z+
Ns

∑
η=1

psη g>sη y+
Ns

∑
η=1

dη ,

and xs j := (zs j,ys j,ds j) is the optimal solution of subproblem (54) for scenario s at
iteration j.

By construction, we only consider the first scenarios for the decomposition in (53)
and so ∆ =

{
δ :
(

psδ s
)N

s=1 ∈ ∂ρ1(0)
}

, where ∂ρ1(0) was shown in (43). Therefore
the master problem of partial bundle method for the truncated tree method has the
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following form:

max
v,λ ,δ

N

∑
s=1

ps
(

vs−
r
2
‖λ s− λ̄

s‖2
)

s.t. vs ≤
〈
δ

s jcs +λ
s j,xs j〉+〈(xs j,〈cs,xs j〉

)
,(λ s,δ s)− (λ s j,δ s j)

〉
,

Πλ = 0,

δ
s = ps

[
1−

N

∑
k=1

pkτk + τs

]
,

0≤ τs ≤ κ1,

for all j ∈ Js, s = 1, . . . ,N.

(56)

After a few algebraic simplifications we derive from (52) the individual truncated tree
scenario subproblems for each scenario s = 1, . . . ,N,

min
z,u,w,v,ζ

δ
st + 〈λ s,z〉

s.t. ζ
η =−〈r,u〉+ 〈l,w〉+ 〈Hsη ,v〉,

t = 〈cs,z〉+
〈
(psk)

Ns
k=1, ζ +κ2S

〉
Sη ≥ ζ

η −
〈
(psk)

Ns
k=1, ζ

〉
, Sη ≥ 0,

Mu− z≤ 0, u≥ 0,
w≥ Ds−u, w≥ 0,
v≥ u−Ds, v≥ 0,
for all η = 1, . . . ,Ns,

(57)

where each decision variable ys j from (52) has been subdivided according to (42), i.e.
x := (z,y) := (z,u,v,w).

Following this we compared the total running time, total number of iterations,
and the average time per iteration of each method. Table 1 shows the comparison of
all the methods on a problem with 10 parts and 5 products, for different numbers of
first-stage and second-stage scenarios.

The classical cutting plane method was inefficient and failed to converge in a rea-
sonable time on most instances, while being outperformed by all the other methods
when it converged. For this reason we omitted it from Table 1. Clearly, small prob-
lems are best solved directly by linear programming in formulation (42). The useful-
ness of decomposition is shown when we consider large problems. For example on
the instance with 200 first-stage scenarios, with each followed by 200 second-stage
scenarios, the general bundle and the partial truncated tree methods outperformed
the linear programming formulation. More important is the case with 300 first-stage
scenarios, with 300 second-stage scenarios after each of them, where the linear pro-
gramming approach failed, but the truncated tree and partial truncated tree methods
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Size LP Truncated Tree Partial Truncated Tree General Bundle
N×Ns Time Time Iter. T/I Time Iter. T/I Time Iter. T/I

6×3 0 106 476 0.223 15 97 0.155 84 492 0.171
5×5 0 95 451 0.211 36 194 0.186 61 419 0.146
5×6 0 75 388 0.193 13 86 0.151 48 270 0.178
6×6 0 134 574 0.233 133 441 0.302 109 521 0.209

10×10 0 313 435 0.720 287 419 0.685 309 501 0.617
50×50 5 1381 510 2.708 1652 485 3.406 3283 414 7.930

100×100 98 5570 660 8.439 1547 300 5.157 28316 579 48.91
200×200 5767 5975 240 24.89 4722 200 23.61 54336 291 186.7
300×300 - 19910 255 78.08 20622 255 80.87 - - -

Table 1 Performance of decomposition methods. Tests were performed for N first-stage scenarios, and Ns
second-stage scenarios following each first-stage scenario.

were able to find a solution. In this case the meager memory requirements of these
methods allowed us to obtain a solution even when the linear programming formula-
tion was too large for our computer memory. In general, we saw the partial truncated
tree method outperforming the truncated tree method but this might be problem spe-
cific.

Notice that the truncated tree method moves the calculation of the second stage
risk measure from the master problem to the subproblems resulting in a smaller mas-
ter problem but larger subproblems. This is the main difference between the truncated
tree and general bundle methods. In larger instances, the dimension of the master
problem affects the number of iterations necessary to find a solution, as well as time
to solve the master problem at each iteration. For these reason, the truncated tree
method with its simpler master problem outperforms the general bundle method on
the largest instances.
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12. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, Springer,
Berlin, 1993.

13. P. Kall and J. Mayer, Stochastic Linear Programming, Springer, New York, 2005.
14. K. C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Mathematical

Programming 27 (1983) 320–341.
15. K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics,

vol. 1133, Springer-Verlag, Berlin, 1985.
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27. A. Ruszczyński and A. Shapiro, Optimization of convex risk functions, Math. Oper. Res. 31 (2006)

433–452.
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A The Partial Bundle Method

A.1 The Method

We consider the problem
minimize
(x,y)∈A

f (x,y), (58)

in which the set A⊆Rn×Rm is closed convex and the function f :Rn×Rm→R is convex, proper, and
lower semicontinuous. We assume that the set A is x-bounded in the sense that for every bounded subset
Y ⊂Rm the intersection A∩ (Rn×Y ) is bounded.

We define the following regularized master problem:

minimize
(x,y)∈A

r
2
‖y−wk‖2 + f k(x,y), (59)
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where the model f k is defined by:

f k(x,y),max
j∈Jk

[
f (x j,y j)+

〈
g j,(x,y)− (x j,y j)

〉]
, (60)

with g j ∈ ∂ f (x j,y j), j ∈ Jk . The set Jk is a subset of {1, . . . ,k} determined by a procedure for selecting
cuts. At this moment we may think of Jk as being equal to {1, . . . ,k}.

In the proximal term (r/2)‖y−wk‖2, where r > 0, the center (vk,wk) is updated depending on the re-
lations between the value of f (xk+1,yk+1) at the mater’s solution, (xk+1,yk+1), and its prediction provided
be the current model, f k(xk+1,yk+1). If these values are equal or close, we set (vk+1,wk+1) := (xk+1,yk+1)
(descent step); otherwise (vk+1,wk+1) := (vk,wk) (null step). In any case, the collection of cuts is updated,
and the iteration continues.

The regularized master problem can be equivalently written as a problem with a quadratic objective
function and linear constraints:

minimize z+
r
2
‖y−wk‖2

subject to z≥ f (x j,y j)+
〈
g j,(x,y)− (x j,y j)

〉
, j ∈ Jk,

(x,y) ∈ A.

(61)

If the set A is a convex polyhedron, the master problem can be readily solved by specialized techniques,
enjoying the finite termination property.

Let us observe that problem (61) satisfies Slater’s constraint qualification condition. Indeed, for every
(xS,yS) ∈ A we can choose zs so large that all constraints are satisfied as strict inequalities. Therefore the
optimal solution of the master problem satisfies the necessary and sufficient conditions of optimality with
Lagrange multipliers (see [24, Thm. 3.34]). We denote by λ k

j ∈ Jk , the Lagrange multipliers associated
with the constraints of problem (61).

The detailed algorithm is stated below. The parameter γ ∈ (0,1) is a fixed constant used to compare
the observed improvement in the objective value to the predicted improvement.

Step 0. Set k := 1, J0 := /0, and z1 :=−∞.
Step 1. Calculate f (xk,yk) and gk ∈ ∂ f (xk,yk). If f (xk,yk)> zk then set Jk := Jk−1 ∪{k}; otherwise set

Jk := Jk−1.
Step 2. If k = 1 or if

f (xk,yk)≤ (1− γ) f (vk−1,wk−1)+ γ f k−1(xk,yk),

then set (vk,wk) := (xk,yk); otherwise Step 2 is a null step and we set (vk,wk) := (vk−1,wk−1).
Step 3. Solve the master problem (61). Denote by (xk+1,yk+1) and zk+1 its solution and set f k(xk+1,yk+1) :=

zk+1.
Step 4. If f k(xk+1,yk+1) = f (vk,wk) then stop (the point (vk,wk) is an optimal solution); otherwise

continue.
Step 5. If Step 2 was a null step then go to Step 6. Else (Step 2 was a descent step) remove from the set

of cuts Jk some (or all) cuts whose Lagrange multipliers λ k
j at the solution of (61) are 0.

Step 6. Increase k by one, and go to Step 1.

A.2 Convergence

First we prove that if the algorithm gets stuck at a w-center then it will approximate an optimal solution.

Lemma 2 Let f ∗ be an optimal solution to (58) and suppose that the sequence,
{
(xk,yk)

}
, obtained by

the partial bundle method consists of only null steps from iteration t on. Then

lim
k→∞

f k−1(xk,yk) = f ∗ = lim
k→∞

f (xk,yk).
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Proof For any ε > 0, let Kε :=
{

k : k > t and f k−1(xk,yk)+ ε < f (xk,yk)
}

and let k1,k2 ∈Kε with t <
k1 < k2.

Since we only have null steps we get that for every k > t, (vk,wk) = (xt ,yt) and the cutting plane
generated at k will remain on the master problem from k on. This implies that the sequence

{
f k−1(xk,yk)

}
is non-decreasing from t + 1 on. Also, since the cutting plane generated at (xk1 ,yk1 ) will remain in the
master problem at iteration k2−1, we get:

f (xk1 ,yk1 )+
〈

gk1 ,(xk2 ,yk2 )− (xk1 ,yk1 )
〉
≤ f k2−1(xk2 ,yk2 ).

On the other hand, ε < f (xk2 ,yk2 )− f k2−1(xk2 ,yk2 ) which combined with the last inequality yields

ε < f (xk2 ,yk2 )− f (xk1 ,yk1 )+
〈

gk1 ,(xk1 ,yk1 )− (xk2 ,yk2 )
〉
.

Since all the steps made are null, the points yk , with k > t, are contained in a bounded neighborhood of
wk = yt . This and the x-boundedness of f guarantee us that B := Conv

{
(x j,y j)

∣∣ j ∈Kε

}
is bounded.

The function f is subdifferentiable in B, so there exists a constant C such that f (x1,y1)− f (x2,y2) ≤
C‖(x1,y1)− (x2,y2)‖, for all x1,x2 ∈ B. Subgradients on bounded sets are bounded, and thus we can
choose C large enough so that ‖g j‖ ≤C, for all j ∈Kε . It follows from the last displayed inequality that

ε < 2C‖(xk1 ,yk1 )− (xk2 ,yk2 )‖ for all k1,k2 ∈Kε , k1 6= k2.

As the set B is compact, there can exist only finitely many points in Kε ⊂ B having distance at least ε/(2C)
from each other. Thus the last inequality implies that the set Kε is finite for each ε > 0. This means that

lim
k→∞

f (xk)− f k−1(xk) = 0. (62)

By construction the sequences
{

f k−1(xk)
}

and
{

f (xk)
}

satisfy the relation

f k−1(xk)≤ f ∗ ≤ f (xk), for every k ∈ N.

Therefore the eventual monotonicity of
{

f k−1(xk)
}

and (62) imply that

lim
k→∞

f k−1(xk,yk) = f ∗ = lim
k→∞

f (xk,yk).

ut

Next we prove another intermediate step towards convergence.

Lemma 3 Assume that problem (58) has an optimal solution and suppose that the sequence,
{
(xk,yk)

}
,

obtained by the partial bundle method has infinitely many descent steps. Then the following holds.
1. The sequence {(vk,wk)} approximates an optimal solution of (58).
2. The sequence

{
wk} converges to a point ỹ such that there is an optimal solution of (58) of the form

(x̃, ỹ).

Proof Let us denote by K the set of iterations at which descent steps occur. If (vk+1,wk+1) = (xk+1,yk+1)
is the optimal solution of the master problem (59), we have the necessary condition of optimality

0 ∈ ∂

[ r
2
‖y−wk‖2 + f k(x,y)

]
+NA(x,y) at (x,y) = (vk+1,wk+1).

Hence
−
[
0,r(wk+1−wk)

]
∈ ∂ f k(vk+1,wk+1)+NA(vk+1,wk+1).

Let (x∗,y∗) be an optimal solution of (58). By the subgradient inequality for f k we get (for some h ∈
NA(vk+1,wk+1)) the estimate

f k(x∗,y∗)≥ f k(vk+1,wk+1)−
〈[

0,r
(

wk+1−wk
)]

,(x∗,y∗)− (vk+1,wk+1)
〉

−
〈

h,(x∗,y∗)− (vk+1,wk+1)
〉

≥ f k(vk+1,wk+1)− r
〈

wk+1−wk,y∗−wk+1
〉
.

(63)
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A descent step from (vk,wk) to (vk+1,wk+1) occurs, so the test of Step 2 is satisfied (for k+1):

f (vk+1,wk+1)≤ (1− γ) f (vk,wk)+ γ f k(vk+1,wk+1).

After elementary manipulations we can rewrite it as

f k(vk+1,wk+1)≥ f (vk+1,wk+1)− 1− γ

γ

[
f (vk,wk)− f (vk+1,wk+1)

]
. (64)

Combining the last inequality with (63) and using the relation f (x∗,y∗)≥ f k(x∗,y∗) we obtain

f (x∗,y∗)≥ f (vk+1,wk+1)+
1− γ

γ

[
f (vk+1,wk+1)− f (vk,wk)

]
− r
〈

wk+1−wk,y∗−wk+1
〉
.

This can be substituted to the identity:

‖wk+1− y∗‖2 = ‖wk− y∗‖2 +2
〈

wk+1−wk,wk+1− y∗
〉
−‖wk+1−wk‖2.

After skipping the last term we get

‖wk+1− y∗‖2 ≤ ‖wk− y∗‖2− r
2

[
f (vk+1,wk+1)− f (x∗,y∗)

]
+

2(1− γ)

γr

[
f (vk,wk)− f (vk+1,wk+1)

]
for all k ∈K .

(65)

The series ∑
∞
k=1[ f (v

k,wk)− f (vk+1,wk+1)] is convergent, because { f (vk,wk)} is nonincreasing and bounded
from below by f (x∗,y∗). Therefore we obtain from (65) that the distance ‖wk+1 − y∗‖ is uniformly
bounded, and so {wk} must have accumulation points. This and the x-boundedness of f imply that the
sequence {vk,wk} has accumulation points.

Summing up (65) for k ∈K we get

∑
k∈K

(
f (vk+1,wk+1)− f (x∗,y∗)

)
≤ r

2
‖w1− y∗‖2 +

1− γ

γ

[
f (v1,w1)− lim

k→∞
f (vk,wk)

]
,

so f (vk+1,wk+1)→ f (x∗,y∗), k ∈K . Consequently, at every accumulation point (x̃, ỹ) of {(vk,wk)} one
has f (x̃, ỹ) = f (x∗,y∗). Since (x̃, ỹ) is optimal, we can substitute it for (x∗,y∗) in (65). Skipping the negative
term we get

‖wk+1− ỹ‖2 ≤ ‖wk− ỹ‖2 +
2(1− γ)

γr

[
f (vk,wk)− f (vk+1,wk+1)

]
.

It is true not only for k ∈K but for all k, because at k 6∈K we have a trivial equality here. Summing these
inequalities from k = l to k = q > l we get

‖wq+1− ỹ‖2 ≤ ‖wl − ỹ‖2 +
2(1− γ)

γr

[
f (vl ,wl)− f (vq+1,wq+1)

]
.

Since ỹ is an accumulation point, for ε > 0 we can find l such that ‖wl − ỹ‖ ≤ ε . Also, if l is large
enough, f (vl ,wl)− f (vq+1,wq+1)≤ ε for all q> l, because { f (vk,wk)} is convergent. Then ‖wq+1− ỹ‖2 ≤
ε2 +2ε(1− γ)/(γr) for all q > l, so the sequence {wk} is convergent to ỹ. ut

Now we are ready to prove convergence of the partial bundle method.

Theorem 3 Assume that problem (58) has an optimal solution, f ∗, and let
{
(xk,yk)

}
be the sequence

obtained by the partial bundle method. Then

liminf
k→∞

f (xk,yk) = f ∗.

Proof If there are only finitely many descent steps then Lemma 2 gives the desired result. Thus we assume
that the number of descent steps is infinite and by Lemma 3, limk→∞ f (vk,wk) = f ∗. Clearly, the sequence
{ f (vk,wk)} is an infinite subsequence of { f (xk,yk)}. Then, since f (xk,yk)≥ f ∗ for every k, we obtain that
liminfk→∞ f (xk,yk) = f ∗. ut


