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Abstract. An optimization based method is proposed to generate moment matching scenarios

for numerical integration and its use in stochastic programming. The main advantage of the
method is its flexibility: it can generate scenarios matching any prescribed set of moments

of the underlying distribution rather than matching all moments up to a certain order, and

the distribution can be defined over an arbitrary set. This allows for a reduction in the
number of scenarios and allows the scenarios to be better tailored to the problem at hand.

The method is based on a semi-infinite linear programming formulation of the problem that
is shown to be solvable with polynomial iteration complexity. A practical column generation

method is implemented. The column generation subproblems are polynomial optimization

problems, however, they need not be solved to optimality. It is found that the columns in the
column generation approach can be efficiently generated by random sampling. The number

of scenarios generated matches a lower bound of Tchakaloff’s. The rate of convergence of

the approximation error is established for continuous integrands, and an improved bound is
given for smooth integrands. Extensive numerical experiments are presented in which variants

of the proposed method are compared to Monte Carlo and quasi-Monte Carlo methods both

on numerical integration problems and on stochastic optimization problems. The benefits of
being able to match any prescribed set of moments, rather than all moments up to a certain

order, is also demonstrated using optimization problems with 100-dimensional random vectors.

Empirical results show that the proposed approach outperforms Monte Carlo and quasi-Monte
Carlo based approaches on the tested problems.

1. Introduction

We consider the scenario generation problem (or cubature formula generation problem) for
numerical integration within the framework of general stochastic programs of the form

min
x∈X

∫
Ξ

f(x, ξ)µ(dξ), (1)

where f is a convex (hence, continuous) real-valued function, X ⊆ Rn is a convex set, and
(Ξ,F , µ) is a Kolmogorov probability space. We assume that Ξ ⊆ Rn, and that moments of the
measure µ can be computed. In numerical solutions (1) is usually approximated by replacing the
measure µ by another one, concentrated on finitely many points:∫

Ξ

f(x, ξ)µ(dξ) ≈
K∑
k=1

wkf(x, ξk). (2)

The points ξk ∈ Ξ can be interpreted as scenarios representing the original sample space Ξ:
scenario ξk occurs with probability wk.

The problem of scenario generation, that is, the construction of the right wk and ξk subject
to various constraints (derived from the application at hand or imposed by limited computing
power) has been a fundamental problem in numerical mathematics and operations research. From
an abstract viewpoint, ignoring the dependence of f on x, the approximation of (1) by (2) is
simply the problem of constructing cubature formulas for the numerical approximation of the
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multiple integral f(x, ·), which has a long history of study in mathematical analysis going back
to Gauss [9]. In this context, ξk are the nodes and wk are the weights of the cubature formula;
the weights need not be probabilities, although they sum to one in every reasonable formula.
We will use the terminology of both fields interchangeably in this paper, as they are completely
analogous.

In this paper we revisit the classic idea of “polynomial exactness” in the theory of cubature
(numerical integration), which corresponds to the approach of “moment matching” scenario gen-
eration in stochastic programming. We propose a novel optimization based method to generate
formulas of the form (2) with nonnegative weights wk. This method finds a cubature formula
with a K that matches Tchakaloff’s lower bound [30]. The algorithm is based on convex opti-
mization, its iteration complexity is polynomial in the number of moments to be matched. The
generated formulas can flexibly be adapted to the particular instance of (1) at hand, as the set
of moments to be matched can be chosen arbitrarily, and also the domain of integration and the
underlying distribution can be arbitrary, as long as moments of the underlying distribution can
be computed (approximately, at least), and random samples from the distribution can be drawn
efficiently. To our knowledge, this setup is considerably more general than the known approaches
in the numerical analysis and stochastic programming literature. We proceed with the precise
definitions of our problem.

Definition 1 (cubature formula). A cubature formula is a finitely supported finite signed measure
on Rn, represented by a pair (ξ, w) ∈ (Rn)K ×RK ; the components ξ1, . . . , ξK of ξ are the nodes
or support points of the formula, the components w1, . . . , wK of w are the corresponding weights.
The formula is positive if w > 0 componentwise, and it is interior if it is supported on Ξ.

In the numerical integration setting the most important property cubature formulas must have
is that the approximation (2) is exact in some space of “interesting” functions, such as polynomials
up to a given total degree, which then allows one to estimate the approximation error in larger
classes of functions, in particular in the classes of analytic and continuous functions [29].

As customary, we shall denote by R[x] the ring of n-variate polynomials whose variables are
represented by the components of the vector x; R[x]d denotes the space of polynomials of (total)

degree up to d, with real coefficients. This is a linear space of dimension N(n, d) =
(
n+d
n

)
.

Definition 2 (degree of precision or exactness). The degree of exactness or degree of precision
of a cubature formula (ξ, w) with respect to the measure µ is the largest integer d with the property
that the approximation (2) is exact for polynomials up to degree d, that is,∫

Ξ

f(x)µ(dx) =

K∑
k=1

wkf(ξk) for every polynomial f ∈ R[x]d.

A cubature formula is exact for polynomials of degree up to d if and only if its values for
monomials up to total degree d agree with the moments of µ of up to order d. This requirement
has a clear interpretation in stochastic programming: a positive cubature formula with degree of
exactness d corresponds to a discrete distribution whose moments up to order d agree with the
corresponding moments of the probability measure µ. Hence, this approach to finding a finite set
of representative scenarios for µ in stochastic programming is referred to as moment matching
scenario generation, and the corresponding cubature formulas are also referred to as moment
matching formulas.

The main difficulty of solving (1) is that it requires the computation of a potentially large
number of integrals, and that the evaluation of the integrands may also be expensive. Hence,
we must rely on formulas (2) with as small K as possible. The focus of the theory of cubature
has always been the trade-off between the error of approximation in (2) and the magnitude
of K, however, methods successful in the integration of simple integrands (outside the field of



MOMENT MATCHING SCENARIO GENERATION 3

optimization) always assume that the number of function evaluations can be much larger than
the typical number of scenarios in stochastic programming. This is highlighted both by the
importance given to asymptotic analysis of cubature formulas (as the dimension and the number
of function evaluations both tend to infinity) and by the numerical experiments typical in the
numerical analysis literature, which often take K ≈ 105 or K ≈ 106; see, e.g., [10, 27].

Another concern is that existing methods of cubature do not provide their user with the
flexibility to adapt the cubature formulas to the stochastic optimization problem at hand. In
stochastic programming available computing power puts a constraint on the size of the node
set of the cubature formula. Also, mixed moments of random variables may have different
importance due to their association with different sources of uncertainty. Hence the need for
flexible methods for designing cubature formulas that can match any prescribed set of moments,
rather than all moments up to a certain order. To our knowledge, this problem has not been
addressed in the numerical integration literature. An example of such an approach used in
stochastic programming is presented in [16], where a scenario generation method is proposed
to match all marginal moments of order 4 and lower, and all correlations. Unfortunately no
convergence proof is given in [16] and this approach does not seem to admit a generalization for
higher order moments or other combination of moments.

The positivity of the weights of a cubature formula is desirable for multiple reasons: if the
weights also sum to one, then the weights can be interpreted as probabilities. It also helps prevent
cancellation errors in the formula. Lastly, but most importantly, in convex optimization models,
where f(·, ξ) is convex for every ξ ∈ Ξ, the approximation

∫
Ξ
f(x, ξ)µ(dξ) ≈

∑
k wkf(x, ξk)

preserves the convexity of f in x if wk > 0. Especially motivated by the last argument, in this
paper we concentrate only on positive cubature formulas. Note that the weights sum to one
for every formula that is exact for constant polynomials, thus the weights of moment matching
positive formulas are always probabilities.

The main contributions of this paper are twofold. First, we provide a systematic approach to
moment matching scenario generation, and establish their rate of convergence (as the number
of scenarios and the degree of exactness increase) both for general continuous integrands and
for smooth integrands with continuous derivatives. Second, we present a novel optimization
based method designed to find cubature formulas. The method generates moment matching
positive interior formulas with a small number of nodes. It can be used to match any prescribed
set of moments. It is applicable to problems with arbitrary probability measures µ as long as
the moments of µ are known, and sampling from the distribution represented by µ is possible.
A variant using the ellipsoid method is shown to an iteration complexity polynomial in the
number of moments to be matched, while a simplex method based column generation variant
has even lower empirical iteration complexity. Focusing on the column generation approach,
it is shown that the column generation subproblem is a polynomial optimization problem, and
various approaches to its solution are discussed. Extensive numerical experiments compare the
different column generation approaches (and the resulting moment matching cubature formulas)
to other scenario generation methods. The results of these experiments indicate that moment
matching scenarios generated by our approach consistently outperform Monte Carlo and quasi-
Monte Carlo integration in both integration and stochastic programming problems with small
number of scenarios.

We close this section with a brief outline of the paper. The next section is a broad review
of the immense literature on cubature and scenario generation; readers familiar with the topic
may skip it altogether. Rates of convergence of moment matching formulas, as the number of
scenarios increases, are derived in Section 3 under different assumptions on the integrand. Our
new scenario generation method is introduced in Section 4, where we also show that its iteration
complexity is polynomial. In Section 5 variants of the method are compared to each other and
to Monte Carlo and quasi-Monte Carlo scenario generation on a variety of problems. Both their
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efficiency in formula generation and their performance in integration and stochastic optimization
are considered; see the beginning of Section 5 for a detailed outline of our numerical experiments.

2. Methods of numerical integration and scenario generation

2.1. Past work on cubature formulas. A large number of scenario generation methods are
available that are based on the discretization of the probability measure µ, [26] is an up-to-date
survey. These all have direct interpretation as cubature formulas. Below we only provide a brief
summary of these approaches.

2.1.1. Optimal cubature formulas. The study of cubature of univariate functions, in which case
the term quadrature rather than cubature is commonly used, goes back to Gauss [9]. Mini-
mally supported quadrature formulas, which are all positive, are completely characterized for an
arbitrary measure µ. The following observations are known.

Proposition 3 (Gaussian quadrature [7]). Suppose n = 1, and µ is a given probability measure
supported on the closed interval Ξ = [a, b]. Then every quadrature formula with K nodes has
degree of exactness at most 2K − 1. Furthermore, there is a unique K-node quadrature formula
with exactness 2K − 1. This quadrature formula is a positive and interior formula.

The quadrature formulas described in the previous proposition are called Gaussian formulas.
It is elementary that 2K − 1 is also an upper bound on the degree of exactness of every (uni- or
multivariate)K-node cubature formula. By extension from the univariate case, cubature formulas
that achieve this exactness are also called Gaussian. However, the question which multivariate
measures µ admit a Gaussian formula is largely unsolved. Whenever exist, Gaussian cubature
formulas are also positive, but are not necessarily interior. They are characterized as the common
roots of orthogonal polynomials. For more on Gaussian cubature and orthogonal polynomials,
see [7, Section 3.7].

The minimum number of nodes is more easily found for positive interior formulas. It can be
shown that for every n-dimensional Ξ and µ and every degree d there exists a positive interior
formula with

(
n+d
d

)
nodes with degree of exactness d, see Theorem 10 below. On the other hand,

a result of Tchakaloff implies that for every n there exist measures for which this bound is sharp
[30]. The method proposed in this paper constructs formulas with exactly this many scenarios
or fewer.

2.1.2. Product formulas. If Ξ = [0, 1]n, simple cubature formulas can be obtained by considering
direct products of univariate (quadrature) formulas. Using the same K-node quadrature formula
(ξ, w) for each dimension, we obtain a positive formula with Kn points. The nodes of such a
formula are vectors of the form (xi1 , . . . , xin) where 1 ≤ ij ≤ K} for each j = 1, . . . , n, the
corresponding weight is

∏n
j=1 wij . The degree of exactness of this formula is the same as the

exactness of the univariate formula (ξ, w). Furthermore, product formulas match several higher-
order mixed moments than their degree of exactness.

This approach is also helpful to derive formulas with different degree of exactness for different
marginals. However, owing to the large number of points used, product formulas are only useful
in low dimensions, or when the required degree of exactness is very low, say, 3.

Product formulas are directly applicable only when the domain of integration is the unit cube
[0, 1]n. For other domains, a change of variables might be necessary. This is also true for most
other approaches of this section.

2.1.3. Sparse grid formulas. Sparse grid integration methods are also based on quadrature for-
mulas and their product formulas, but they avoid the exponential increase in the number of nodes
as the dimension increases. The classic sparse grid approximation framework was established by
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Smolyak in [28]; see [13] for a transparent introduction to its application to approximate numer-
ical integration. Sparse grid formulas can also be adapted to match moments of different orders
for each marginal, but they are not flexible enough to match any prescribed set of moments,
and they have negative weights. Assigning nonnegative weights to sparse grid points while still
matching a prescribed set of moments is generally also not possible, unless the sparse grid con-
tains the nodes of a product formula with a required degree of exactness. Hence, we do not
consider sparse grid formulas any further.

2.1.4. Optimal quantization of probability measures. Given a probability measure µ and a prob-
ability metric D, the problem of optimal quantization is to find a discrete probability measure
νK that minimizes the distance D(µ, ·) among all probability measures supported on K points.
This approach is particularly reasonable when the stochastic program is known to be stable with
respect to the chosen metric D. This approach is still a very active research area. Optimal quan-
tization yields positive formulas, and may yield interior formulas as well. It may also be extended
to multi-stage problems by incorporating the tree structure in the constraints of the optimization
model. The main drawback of this approach is its complexity: for most popular metrics it is very
difficult to find the optimal νK even for single-stage problems. The exact formulation leads to
a non-differentiable non-convex optimization model, whose solution requires global optimization
or integer programming techniques; see [26] and the references therein.

2.1.5. Other non-product formulas. The construction of cubature rules with a small number of
points and a given degree of exactness is a largely open problem. The existing methods usually
have a very narrow scope: the formulas are essentially derived one by one for every domain of
integration (for instance, hypercube of a given dimension), every measure µ, and every degree
of exactness, with little hope of generalization to the level necessary for our purposes. The most
general and most popular methods rely on the theory of orthogonal polynomials and require
the solution of a large nonlinear system of equations. While these approaches have provided
excellent formulas, often with considerably fewer nodes than Tchakaloff’s bound (and what is
obtained in the present paper), they are numerically difficult, they have not yielded formulas for
high-dimensional problems, and they have no guarantee that they yield either positive or interior
formulas. Hence, we do not consider these formulas either, but direct the interested reader to
two compendiums of such formulas: Stroud’s classic book [29], and the electronic encyclopedia
of cubature formulas [3].

2.1.6. Monte Carlo and quasi-Monte Carlo methods. Monte Carlo integration amounts to using
the formula (2) with equal weights: wk = 1/K for each k, and with K independent random ξk
sampled from Ξ according to the distribution corresponding to µ. The convergence as K → ∞
is almost certain by the strong law of large numbers, at a rate O(K−1/2).

When µ is uniform, quasi-Monte Carlo methods are similar to Monte Carlo integration, but the
random numbers used to generate the samples ξk are replaced with elements of a low-discrepancy
sequence, which fill Ξ more evenly than (pseudo-)random samples. For other distributions ap-
propriately transformed low-discrepancy sequences are used. Popular low-discrepancy sequences
include those constructed by Niederreiter, Halton, and Sobol. These formulas involve no ran-
domization. Their rate of convergence is O((lognK)/K) for sufficiently “smooth” integrands
(defined precisely as functions of bounded variation in the sense of Hardy and Krause); the rate
of convergence for non-smooth functions is discussed in Section 3.

Both Monte Carlo and quasi-Monte Carlo methods yield positive interior formulas. For more
on these methods see for example the classic text [21].

2.2. Moment matching scenario generation. Moment matching methods in stochastic pro-
gramming have been proposed, but primarily in the context of sampling from partially specified
distributions, where to goal is to efficiently sample some (unknown) distribution that has given
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moments up to a certain order (usually three or four). The motivation behind this line of research
is different from ours. Moment matching sampling algorithms do not yield cubature formulas.
They are to be used in a Monte Carlo setting when the usual Monte Carlo integration is not
applicable, because the measure µ is not given, only its moments up to some order.

There are limitations of this approach in addition to the fact that they do not yield cubature
formulas. One is that constraints on the support of the distributions are not considered, hence, the
methods may yield scenarios outside the sample space Ξ. Moreover, such sampling methods so far
have only been derived on a case-by-case basis. For instance in [19] the marginal distributions are
given along with a covariance matrix, and the latter is used to determine a transformation which
is then used to generate samples with the given marginals and the desired correlation. A similar
approach is used in [16], where marginal moments up to the fourth order are matched along
with the mixed second moments. (The method of this paper has an additional drawback that it
is not known to be convergent.) The covariance matrix is matched and the first four marginal
moments are approximated using semidefinite optimization in [4]. None of these methods can be
generalized to match higher order moments, or any other set of moments.

2.3. Scenario reduction, and other non-moment matching methods. An entirely differ-
ent approach, both for single-stage and multi-stage problems is scenario reduction, where a large
number of sample scenarios are generated first (for example, randomly, or using a regular grid),
and then a subset of them is removed to achieve the desired complexity of the model, measured
by the number of scenarios K.

In one variant the scenarios to remove are determined by minimizing some probability metric
between the original and the reduced scenario set. This problem can be formulated as a very
large-scale mixed integer linear programming problem that is very difficult to solve exactly;
instead, heuristics are used [8].

Another family of scenario reduction heuristics comes from data mining: traditional clustering
methods can be applied to a large number of simulated scenarios to obtain a smaller number of
scenarios that are “representative” to the original scenario set. An example of this approach is
[12].

It is out of the scope of this paper, but another interesting problem is the generation of scenario
trees for multi-stage models, preserving information given by the tree structure in addition to
the information provided by the leaves. See [14] for some recent results in this area.

3. The rate of convergence of moment matching cubature formulas

The main motivation behind moment matching is the observation that cubature formulas
with high degree of polynomial exactness should provide accurate estimates of the integrals of
functions that can be approximated well by polynomials – this includes continuous functions
on closed and bounded domains. In this section we formalize this statement and provide an
upper bound on the rate of convergence of moment matching cubature formulas as a function of
their modulus of smoothness. We also show that this rate of convergence cannot be improved
by any other formula, aside from constants in this function, without additional assumptions on
the integrand. At the end of the section we give a tighter bound for integrands with continuous
derivatives; this rate of convergence improves with the existence of each additional derivative.
We need the following definition.

Definition 4 (modulus of smoothness). The modulus of smoothness of a function f : Ξ 7→ R,
denoted by ωf is the function given by

ωf (δ)
def
= sup {|f(x)− f(y)| : x ∈ Ξ, y ∈ Ξ, ‖x− y‖ ≤ δ} .

It is known that the error of the best polynomial approximation of every continuous f can be
bounded by a function of ωf as follows.
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Theorem 5 (see, e.g. [1]). Let f : Ξ 7→ R be continuous on a compact set Ξ ⊆ Rn. Then for
every nonnegative integer d there is a polynomial Pd of degree d satisfying

sup
Ξ
|f − Pd| ≤ Cωf (1/d),

where C is a positive constant depending only on Ξ, but not on d or f .

This rate of convergence (as the degree increases) is inherited by the error of cubature formulas.

Theorem 6. Assume that the support Ξ ⊆ Rn of the probability measure µ is compact. Then
there is a constant C̄ (depending only on Ξ) such that for every continuous f : Ξ 7→ R and for
every cubature formula with nodes ξ1, . . . , ξK , nonnegative weights w1, . . . , wK , and degree of
exactness d, ∣∣∣∣∣

∫
Ξ

f(ξ)µ(dξ)−
K∑
k=1

wkf(ξk)

∣∣∣∣∣ ≤ C̄ωf (1/d).

Proof. Let Pd be the best degree-d polynomial approximation of f in the uniform norm. Then

we have
∫

Ξ
Pd(ξ)µ(dξ) =

∑K
k=1 wkPd(ξk), therefore,∣∣∣∣∣

∫
Ξ

f(ξ)µ(dξ)−
K∑
k=1

wkf(ξk)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Ξ

f(ξ)µ(dξ)−
K∑
k=1

wkPd(ξk)

∣∣∣∣∣+

∣∣∣∣∣
K∑
k=1

wkf(ξk)−
K∑
k=1

wkPd(ξk)

∣∣∣∣∣
=

∣∣∣∣∫
Ξ

(f(ξ)− Pd(ξ))µ(dξ)

∣∣∣∣+

∣∣∣∣∣
K∑
k=1

wk(f(ξk)− Pd(ξk))

∣∣∣∣∣
≤
∫

Ξ

|f(ξ)− Pd(ξ)|µ(dξ) +

K∑
k=1

wk |f(ξk)− Pd(ξk)|

≤ 2 sup
Ξ
|f − Pd| ≤ 2Cωf (1/d),

using in the last two steps µ(Ξ) =
∑K
k=1 wk = 1 and Theorem 5. Hence, our assertion holds with

C̄ = 2C. �

The rate of convergence of sequences of cubature formulas and scenario generation methods
is usually expressed as a function of the number of nodes (or scenarios) K.

Theorem 7 (rate of convergence). Assume that the support Ξ ⊆ Rn of the probability measure
µ is compact. Then for every K0 there exist a cubature formula with K ≥ K0 nodes ξ1, . . . , ξK
and nonnegative weights w1, . . . , wK satisfying∣∣∣∣∣

∫
Ξ

f(ξ)µ(dξ)−
K∑
k=1

wkf(ξk)

∣∣∣∣∣ ≤ O(ωf (O(K−1/n)))

for every continuous function f : Ξ 7→ R. In particular, formulas with increasing polynomial
exactness have this property.

Proof. By virtue of Theorem 6 it suffices to show that if µ (and hence, n and Ξ) are fixed, we can
construct for every degree of exactness d a cubature formula with positive weights and K = O(dn)
nodes, since then we have C̄ωf (1/d)) = C̄ωf (O(K−1/n)). This follows from Tchakaloff’s theorem

([30]; see also Theorem 10 in Section 4), which states that we have such a formula with K ≤
(
n+d
n

)
nodes and positive weights for every n, d ≥ 1. �

The following theorem shows that this rate of convergence is essentially the best possible even
when Ξ = [0, 1]n, and integration is with respect to the uniform distribution on Ξ.
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Theorem 8. Let Ξ = [0, 1]n and 0 < C1 < 1 and 0 < C2 < 2−n be fixed constants. Then there
exist no cubature formula on K nodes with positive weights that satisfies∣∣∣∣∣

∫
Ξ

f(ξ)dξ −
K∑
k=1

wkf(ξk)

∣∣∣∣∣ ≤ C1ωf (C2K
−1/n)

for every continuous f .

Proof. Let Bx denote the set [0, x1) × · · · [0, xn) for every x = (x1, . . . , xn) ∈ Rn, and for every
A ⊆ [0, 1]n, let λ(A) and χ(A, ·) denote the Lebesgue measure and the characteristic function of
A, respectively. For a formula with nodes ξ1, . . . , ξK and corresponding weights w1, . . . , wK , its
(weighted) star-discrepancy is the quantity

D(ξ, w)
def
= sup

x∈[0,1]n

∣∣∣λ(Bx)−
K∑
k=1

wkχ(Bx, ξk)
∣∣∣.

Suppose that ξ and w are fixed, and that (without loss of generality) the nodes are indexed

in increasing order of their first coordinate. Let k̂ = arg maxwk, and take x̂ = (x̂1, 1, . . . , 1)

with x̂1 =
∑k̂−1
k=1 wk + wk̂/2. From the definitions it is clear that λ(Bx̂) = x̂1 and that∑K

k=1 wkχ(Bx̂, ξk) ∈ {0, w1, w1+w2, . . . ,
∑K
k=1 wk = 1}, meaning that either

∑K
k=1 wkχ(Bx̂, ξk) ≤∑k̂−1

k=1 wk or
∑K
k=1 wkχ(Bx̂, ξk) ≥

∑k̂
k=1 wk. Therefore,∣∣∣λ(Bx̂)−

K∑
k=1

wkχ(Bx̂, ξk)
∣∣∣ ≥ 1

2wk̂,

yielding the estimate

D(ξ, w) ≥ 1
2wk̂ ≥

1
2K . (3)

It is a result of Proinov [24] that if C1 < 1, then there exist no cubature formula on K nodes

with positive weights that satisfies
∣∣∣∫Ξ f(ξ)dξ −

∑K
k=1 wkf(ξk)

∣∣∣ ≤ C1ωf (D(ξ, w)1/n) for every

continuous f . Combining this inequality with (3) yields our assertion. �

The estimates in Theorems 6 and 7 can be improved considerably for smooth functions.

Theorem 9. Suppose that in Theorem 6 all rth order partial derivatives of f are continuous.
Then the error bound of moment matching cubature formulas with degree of exactness d can be
improved to ∣∣∣∣∣

∫
Ξ

f(ξ)µ(dξ)−
K∑
k=1

wkf(ξk)

∣∣∣∣∣ ≤ Ĉd−rω(r)
f (1/d), (4)

where

ω
(r)
f (δ)

def
= sup

ρ∈Nn∑
i ρi=r

ωDρf (δ)

is the highest of the moduli of smoothness of the rth partial derivatives of f .
For functions of bounded rth partial derivatives, there exist moment matching formulas on K

nodes, including those generated by the algorithms of Section 4, whose error (as a function of K)
tends to zero at a rate O(K−r/n).

Proof. The proof of the inequality (4) is the same as the proof of Theorem 6, except that in the
last step we use the stronger bound

sup
Ξ
|f − Pd| ≤ Cd−rω(r)

f (1/d),
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of [1] on the polynomial approximation of r times continuously differentiable functions. The

second assertion then follows from the existence of formulas with K ≤
(
n+d
n

)
nodes and degree

of exactness d, which we shall prove, constructively, in Section 4. �

It is not easy to compare the results of Theorems 7 and 8 to the known rates of convergence
results of quasi-Monte Carlo methods, owing to their different assumptions. Theorem 9 yields
increasingly better rates of convergence for functions of increasingly higher differentiability. In
particular, for r ≥ n the bound provided by Theorem 9 is better than the O((lognK)/K) rate of
convergence of classic QMC methods. There is also a difference in the hidden constants: the latter
rate of convergence depends on the Hardy–Krause variation of the integrand, whereas the rate of
convergence of moment matching depends on the modulus of smoothness. (Note that functions
of bounded modulus of smoothness can have unbounded Hardy–Krause variation.) On the other
hand, some modern quasi-Monte Carlo methods, for example lattice rules and high-order digital
nets also exploit the differentiability of the integrand as well as additional regularity conditions,
such as fast decay in the Fourier coefficients; see, for example, [21, Chap. 5], [6, Chap. 15], and
[17] for the optimal attainable rates of convergence under such assumptions and algorithms.

4. A column generation approach for moment matching

In this section we propose a new approach to constructing cubature formulas that match
any prescribed set of moments. This approach is based on a semi-infinite linear optimization
formulation of the moment matching problem that allows the construction of formulas for a
considerably larger variety of measures than the methods so far described. We shall also underline
that the approach we are about to outline is even more general in that it can be used to find
cubature formulas that give exact values in any given finite dimensional linear space of functions,
not just in spaces of polynomials spanned by monomials. However, in this paper we only consider
formulas matching polynomial moments. First, we need to introduce some notation.

For a point x = (x1, . . . , xn) ∈ Rn, let ux ∈ RN denote the N -dimensional vector whose
components are the monomials whose corresponding moments we are trying to match, in an
arbitrary, but fixed, order (say, the graded lexicographic order). For example, if n = 3 and
we want to match all moments up to order d = 2, then the number of moments to match is
N =

(
n+d
d

)
= 10, and the moments correspond to the monomials

ux = (1, x1, x2, x3, x
2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3)T,

(all the monomials in an arbitrary, but fixed, order) but if n = 2 and we want to match all mixed
moments up to order 3 as well as marginal moments up to order 5, then we have N = 14, and

ux = (1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

4
1, x

4
2, x

5
1, x

5
2)T.

Note that we may use bases of polynomials other than the monomial basis; in fact, in our
computations we used Legendre polynomials to avoid numerical issues while trying to match
high-order moments. In the sequel we will only assume (without loss of generality) that the
components of ux are linearly independent polynomials.

The cubature formula (ξ, w) matches all the required moments if and only if

K∑
k=1

wkuξk = m
def
=

∫
Ξ

uξµ(dξ), (5)

with the integral on the right-hand side understood componentwise. The components of the
vectorm ∈ RN are the required monomial moments of µ, ordered the same way as the components
of ux.

For fixed ξ1, . . . , ξK , finding nonnegative weights to satisfy (5) is a linear programming (feasi-
bility) problem with variables w1, . . . , wK . Hence, we can view the scenario generation problem
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as a semi-infinite linear programming (feasibility) problem, with a continuum of nonnegative
variables indexed by the elements of Rn (or Ξ, if we are looking for an interior formula), and
with N equality constraints. To motivate our approach, we rewrite this feasibility problem as an

optimization problem using the notation α =

(
α1

...
αN

)
:

min
w:Ξ→R, α∈RN

{
N∑
i=1

|αi|

∣∣∣∣∣
∫

Ξ

w(ξ)uξdξ + α = m; w(ξ) ≥ 0 ∀ ξ ∈ Ξ

}
, (6)

whose optimal objective value is 0 if and only if all the required moments of the original distri-
bution can be matched, that is, if m is indeed a vector of moments.

The objective function
∑
i |αi|may be replaced by any other norm of α. To keep the exposition

simple we will continue using the L1 norm.
To find the right (finite-dimensional) ξ in (5), we start with a candidate set of nodes {ξ1, . . . , ξ`},

possibly empty, and solve the auxiliary LP

min
w∈R`, α∈RN

{
N∑
i=1

|αi|
∣∣∣ ∑̀
k=1

wkuξk + α = m, w ≥ 0

}
. (7)

If the optimal objective function value is 0, with optimal solution (α∗ = 0, w∗), then the cubature
formula (ξ, w∗) is a positive formula matching all the desired moments, and we are done. Oth-
erwise, we can find a point ξ`+1 with strictly negative reduced cost, and add it to the candidate
node set.

Before discussing strategies to find the next node to add to the formula, we make two obser-
vations. (Recall the definition of positive and interior cubature formulas from Definition 1.)

Theorem 10. For every (not necessarily probability) measure µ there exists a positive interior

cubature formula with degree of exactness d with respect to µ on N(n, d) =
(
n+d
d

)
points. More

generally, if an arbitrary collection of N moments are to be matched, there exists a positive
interior cubature formula on N points that matches those moments.

Proof. The first part of the assertion is known as Tchakaloff’s theorem [30].
To show the more general second claim, we need to invoke the following conic version of

Carathéodory’s theorem [25, Corollary 17.1.2]: every vector that belongs to an N -dimensional
convex cone C generated by {ci : i ∈ I} can be expressed as a convex combination of N or fewer
vectors ci.

To apply this result, first note that the cone{
v ∈ RN

∣∣∃µ : v =

∫
Ξ

uξµ(dξ)

}
is an N -dimensional non-empty convex cone generated by the vectors uξ, ξ ∈ Ξ. The vector m
belongs to this cone, hence there exists a collection U of N points, U = {uξ1 , . . . , uξN } ⊂ ΞN

such that m is a convex combination of points in U . �

Also note that if {ξ1, . . . , ξK} is the node set of some positive interior cubature formula, then
the convex polytope {

w ≥ 0
∣∣∣ K∑
k=1

wkuξk = m,

}
is non-empty, and has a vertex (basic feasible solution), which has at most as many non-zero
components as the number of equality constraints, which is N . Hence, an N -node formula can
be obtained from every K-node formula with K > N by solving a single linear programming
problem.



MOMENT MATCHING SCENARIO GENERATION 11

Our next observation is that the ellipsoid method can be used to solve our moment matching
semi-infinite linear programming formulation using a polynomial number of iterations.

Theorem 11. Suppose we are given an oracle that finds a node ξ`+1 with strictly negative reduced
cost, given the nodes {ξ1, . . . , ξ`} and the optimal solution to the corresponding auxiliary linear
program (7). Using this oracle, a positive formula matching all required moments with absolute
precision ε can be found in oracle-polynomial time; here “polynomial” means polynomial jointly
in log(1/ε) and N .

Proof. The dual of the semi-infinite LP (6) is the problem

max
p∈RN

{
mTp

∣∣∣ uT
ξ p ≤ 0 ∀ ξ ∈ Ξ; |pi| ≤ 1, i = 1, . . . , N

}
, (8)

and the oracle described in the assumptions is a (strong) separation oracle for it.
Since (8) is a convex semi-infinite LP with finitely many variables, all of which have an absolute

value bounded above by 1, its feasible set is a finite dimensional, circumscribed, convex body.
Hence, (8) can be solved in oracle polynomial time with respect to the separation oracle [11,
Corollary 4.2.7], in the weak sense (by finding an ε-optimal solution), using the ellipsoid method.

If the cuts generated by the ellipsoid method correspond to ξ1, . . . , ξK , then the obtained
ε-optimal solution is an optimal solution of

max
p∈RN

{
mTp

∣∣∣ uT
ξ p ≤ 0 ∀ ξ ∈ {ξ1, . . . , ξK}; |pi| ≤ 1, i = 1, . . . , N

}
,

which in turn is the dual linear program of (7) with ` = K.
Since m ∈ conv{uξ | ξ ∈ Ξ}, the constraints of (8) imply mTp ≤ 0 for every feasible solution,

therefore its optimal solution is also non-positive. As this optimal solution is ε-optimal for the
LP (7) with columns ξ1, . . . , ξ`=K , this latter LP has an optimal solution with objective value at
most ε.

Since K is a polynomial in N , a formula with N nodes selected from {ξ1, . . . , ξK} can be
obtained in polynomial time using the argument preceding the theorem. �

In our implementation the auxiliary LP (7) is solved using the simplex method. The dual
multipliers give vector p in (8). If it is not ε-optimal, the oracle provides the new column ξ`+1

to be added to (7), after which the primal simplex method can be used to resolve the auxiliary
LP starting from the previous dual feasible solution. This is the method we implemented in the
numerical tests, and we found that in this implementation the number of generated columns is
considerably lower than the bounds that can be obtained from the ellipsoid method argument;
we discuss variants of this approach in Section 4.1, and present extensive numerical results in
Section 5.1.

4.1. Column generation oracles. Recall the dual problem (8) of the semi-infinite LP (6).
This problem has a straightforward interpretation: uT

ξ p = p1 + p2ξ1 + . . . is the value of the

polynomial with coefficient vector p (in the basis ux) at the point ξ, while mTp is simply the
integral of the same polynomial over Ξ. Hence, this is an optimization problem over the set of
polynomials in the linear space spanned by ux that are non-positive over Ξ. With a slight abuse
of notation we can identify the coefficient vector p with the polynomial p itself, and (8) can be
equivalently written as follows.

max
p∈span{ux}

{∫
Ξ

p(ξ)µ(dξ)
∣∣∣ p(ξ) ≤ 0 ∀ ξ ∈ Ξ, ‖p‖∞ ≤ 1

}
, (9)

where ‖p‖∞ denotes the L∞ norm of the coefficient vector of p in the basis {ux} (not of the
polynomial p!). For example, if all moments up to order d are matched, the optimization is over
the set span{ux} = R[x]d.
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Similarly, the dual LP of the auxiliary problem (7) can be equivalently written as

max
p∈span{ux}

{∫
Ξ

p(ξ)µ(dξ)
∣∣∣ p(ξk) ≤ 0 ∀ k = 1, . . . , `, ‖p‖∞ ≤ 1

}
. (10)

Thus, scenario generation with the column generation approach outlined at the end of the
previous section can be summarized as Algorithm 1.

Algorithm 1: Moment matching scenario generation with column generation

parameter: ε > 0
1 initialize ξ = {x1, . . . , ξ`} /* arbitrary */

2 repeat
3 solve the primal-dual pair (7)-(10) for w∗, α∗ and p∗

4 if
∑
i |α∗i | < ε then

5 return (ξ, w∗)

6 else
7 find a ξ`+1 ∈ Ξ satisfying p∗(ξ`+1) > 0 /* oracle */

8 ξ ← ξ ∪ {ξ`+1}
9 end if

10 until false

Ideally ε = 0, in practice we shall use a small positive value; see Section 5.8 for details.
Elaborating on the step in line 7: if the optimal objective function of (7) is non-zero, then the
dual optimal solution p∗ cannot be feasible for (9), and the column generation oracle must find
a violated dual inequality, i.e., a ξ`+1 satisfying p∗(ξ`+1) > 0.

Thus, the task of the column generation oracle is to find a point ξ`+1 ∈ Ξ at which the dual
optimal polynomial p∗ assumes a positive value. There are several ways to implement such an
oracle, we discuss a number of them next.

4.1.1. Global polynomial optimization. The most violated inequality can be obtained by finding
the global maximum of p∗. However, this is an NP-hard problem in general even for multilinear
quadratic polynomials p∗, even for the simplest convex polyhedral domains such as the unit cube
Ξ = [0, 1]n or the unit simplex Ξ = {x ∈ Rn |x ≥ 0,

∑
xi = 1}. Hence, it is expected that this

approach may only work for small problems.
Virtually the only known case when the global optimizer can be found in polynomial time is

the well-known case when the degree of p∗ is d = 2 and Ξ is an ellipsoid.

Theorem 12. If the integration domain Ξ is an n-dimensional ellipsoid, a cubature formula
matching all moments up to order two can be found in time polynomial in the dimension n.

Proof. It is well known that quadratic optimization over a full-dimensional ellipsoid can be solved
in polynomial time; this is equivalent to the trust-region subproblem of trust-region methods [22,
Theorem 4.1]. This yields a polynomial time column generation oracle for the column generation
algorithm when Ξ is an ellipsoid and only moments up to order two are matched. �

For polynomials of higher degree, relaxations, convex approximations, or non-convex global
optimization techniques may be used. We survey a number of possible directions.

Sum-of-squares relaxations. The most popular global polynomial optimization methods are
based on sum-of-squares relaxations: they rely on the observation that the maximum of a polyno-
mial p over a domain Ξ is the smallest number c such that c− p is nonnegative over Ξ. Although
the membership problem of the cone of nonnegative polynomials over Ξ is NP-hard even for the
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simplest domains, such as Ξ = Rn and Ξ = [0, 1]n, these cones can be approximated from within
by cones of sum-of-squares polynomials, which are semidefinite representable.

More precisely, suppose Ξ = {ξ ∈ Rn | pj(ξ) ≥ 0, j = 1, . . . , J} for some polynomials p1, . . . , pJ
(allowing J = 0 for Ξ = Rn). Then the cone of polynomials

Σd
def
=


J∑
j=1

pj
∑
i∈Ij

q2
i

∣∣∣∣∣∣ Ij finite ∀ j, qi ∈ R[x]d ∀ i


is a finite dimensional convex cone for every d, and it is a (usually proper) subset of polynomials
nonnegative over Ξ. Cones of this form are called (weighted) sum-of-squares polynomial cones.

For every p1, . . . , pJ and every d ≥ 0, Σd is semidefinite representable [20], therefore the
problem max{c | c − p ∈ Σd} can be solved by solving a semidefinite program. This leads to
a hierarchy of semidefinite programs that provide better and better approximation of the true
value of the maximum of a give polynomial p: if cd − p ∈ Σd for some constant cd. then p ≤ c.
Under certain conditions on the polynomials pj , the sequence {cd}d=1,... of best upper bounds cd
converges to the global maximum of p, for certain problems the convergence is also known to be
finite [18].

This approach has been successful in a number of applications, including combinatorial op-
timization. However, the transformation this approach entails eliminates the arguments of the
polynomial from the decision variables, hence, it gives no direct access to the maximizer, only
to the (approximate) value of the maximum. Under suitable conditions the maximizer can also
be recovered from the optimal solution of the semidefinite relaxations, but in our subproblems
we found that these conditions virtually never held. In our experiments we used two implemen-
tations of this approach, Gloptipoly by Lasserre et al. [15], which is a dual approach (using
moment relaxations), and SparsePOP by Kojima et al. [31], a primal approach using sum-of-
squares polynomials. SparsePOP has yielded some optimal solutions for small subproblems with
little running time (see also Section 5.1), but Gloptipoly has not performed well. Hence so far
this approach has been insufficient for our purposes; we hope that this application will motivate
further research in this area; our subproblems may be useful benchmark problems for global
polynomial optimization.

Global non-convex optimization. Since for small problems, where exact global polynomial
optimization was possible with SparsePOP, global optimization has not yielded better results
than some simpler methods to be discussed below, we have not pursued the use of other global
optimization techniques. We did experiment, however, with a simple multi-start local opti-
mization approach, which was capable of generating columns fast enough to be practical when
formulas with up to 2000 points were generated; see Section 5.1 for details.

4.1.2. Approximate polynomial optimization. Rather than finding the most violated inequality,
one can aim at finding a substantially violated inequality using approximation algorithms for
polynomial optimization. The following theorem summarizes those special cases of polynomial
optimization problems that are known to be approximable in polynomial time.

Theorem 13 ([32, 5]). Let p be an n-variate polynomial of total degree d, and consider the
problem max{p(ξ) | ξ ∈ Ξ}. This problem admits an 4/7-approximation algorithm if d = 2, and
Ξ is the unit cube. Moreover, the same problem admits a polynomial time approximation scheme
(PTAS) for every fixed degree d if Ξ is the unit simplex.

Several negative (inapproximability) results are also known for higher degree polynomials over
the unit cube and the sphere, see, e.g., [5] for details.



MOMENT MATCHING SCENARIO GENERATION 14

4.1.3. Monte Carlo column generation. A violated inequality can be found by choosing random
points ξ ∈ Ξ, and testing whether p(ξ) > 0. If resources permit, multiple such points can be
found, and the one with the most positive value can be added to the node set. The intuition
behind this heuristic is that p is a polynomial whose integral is known to be positive, at the
same time its values are a priori bounded from above. Hence, the measure of points at which it
assumes a positive value cannot be very small, especially in the early iterations, when the integral
of p is large. More precisely, we have the following observation.

Lemma 14. Let p∗ be the optimal solution of (10) with objective function value I =
∫

Ξ
p(ξ)µ(dξ) >

0. Let B be an upper bound on the maximum of every polynomial satisfying the constraints of
(10). (Such a bound can be easily obtained from, say, the constraint ‖p‖∞ ≤ 1.) Take any non-
negative x for which x ≤ I, and draw random points from Ξ with the distribution determined by
µ. Then the expected number of points ξ needed to be drawn until one that satisfies p∗(ξ) ≥ x is
found is at most (B − x)/(I − x).

Proof. As µ(Ξ) = 1, we have I ≤ B, and hence, 0 ≤ x ≤ I ≤ B. Let Lx
def
= {ξ ∈ Ξ | p∗(ξ) ≥ x}

be the upper level set of p∗ corresponding to x. Bounding the value of the integral from above
separately on Lx and its complement, we have

I =

∫
Lx

p(ξ)µ(dξ) +

∫
L̄x

p(ξ)µ(dξ) ≤ Bµ(Lx) + x(1− µ(Lx)),

implying that the expected number of trials until we find a point that belongs to Lx is 1/µ(Lx) ≤
(B − x)/(I − x) if 0 ≤ x < I and x < B. �

If the stopping condition of the column generation algorithm is I < ε for some ε > 0, this
lemma provides an explicit upper bound on the number of samples per iteration, if we choose,
say, x = cI for a fixed 0 < c < 1 in every iteration.

Another advantage of this approach is that it is easily adaptable to arbitrary domains Ξ over
which global polynomial optimization may be difficult. This method only requires that we are
able to generate random samples from the distribution determined by µ.

In the rest of the paper we refer to this variant of our scenario generation method as the
CG-MC (column generation with Monte Carlo) method.

4.1.4. Quasi-Monte Carlo column generation. As an alternative to the previous algorithm, a low-
discrepancy sequence (or “quasi-random” points), such as a Sobol sequence or Halton sequence,
can be used in place of randomly generated points to find a point ξ satisfying p(ξ) > 0.

If the underlying distribution is not uniform, a transformed set of quasi-random points can
be used, if an appropriate change of variables, or more precisely, a diffeomorphism g : [0, 1]n 7→
Ξ satisfying

∫
Ξ
f(·, ξ)µ(dξ) =

∫
[0,1]n

f(·, g(ω))dω, is available. If such a transformation is not

available, but we can sample from the distribution corresponding to µ, then CG-MC must be
used in place of CG-QMC.

We do not have a rigorous bound on the number of points needed to be examined until we find
a suitable one. The heuristic justification is that the quasi-random points fill Ξ rather uniformly,
and they avoid clustering better than uniform (pseudo-)random points. Hence, quasi-random
points avoid visiting points that are close to previously visited points (where p∗ is known to take
only negative values) better than true random points.

In the rest of the paper we refer to this variant of our scenario generation method as the
CG-QMC (column generation with quasi-Monte Carlo) method.
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5. Numerical examples

We first assess the practical iteration complexity of the column generation methods in Section 5.1.
Then we compare the moment matching formulas obtained by the CG-MC and CG-QMC meth-
ods to Monte Carlo and quasi-Monte Carlo integration on a standard test set of numerical inte-
gration problems, with uniform µ, in Section 5.2. We chose the test functions from a standard
battery of test functions.

In Section 5.3 we consider problems with various non-uniform distributions µ. In Section 5.3.1
we repeat the same set of tests as in Section 5.2 after changing the underlying distribution from
uniform to multinormal. These two distributions are perhaps the most important. This test
allows us to test the hypothesis that the shape of the underlying distribution does not have a
dramatic effect on the performance of the moment matching formulas. We carry out a battery of
tests for a wide variety of distributions, including unimodal, bimodal, and U-shaped distributions,
in Section 5.3.2.

In Section 5.4 we evaluate the efficacy of selective moment matching. We consider high-
dimensional integration problems where matching all moments up to any order higher than two
would be impossible, but the integrands are functions with a sparse structure. We use moment
matching formulas that match only a subset of all moments up to order 7, selected to best suit
the integrands at hand. Again, we compare the results to Monte Carlo and quasi-Monte Carlo
integration.

We move on to solving optimization problems in Section 5.5. We consider high-dimensional
stochastic convex optimization problems where the objective function to be optimized is expressed
as an integral. In Section 5.6 we solve a stochastic programs from portfolio optimization models
in the literature.

All algorithms were implemented using Matlab 2011a (version 7.12); the linear programs were
solved using CPLEX (version 12).

5.1. Effect of oracles on formula generation. The time complexity of the column generation
approach is driven by the number of columns that need to be generated until a formula is
found. (After adding a new column, the primal simplex method can be used to warmstart the
reoptimization of the auxiliary LP, which is relatively fast, see below.)

Algorithm 1 needs to be initialized with a set of nodes (or columns). In CG-QMC the columns
to be tested is completely determined, as we consider the columns corresponding to a fixed,
deterministic low-discrepancy sequence. Hence, the initial set of columns can be empty. In our
implementation of the CG-MC variant we initialized the method with a singleton set containing
the midpoint of Ξ. (It can be shown that if all moments up to a given degree are to be matched,
and the Legendre basis is used to represent the polynomials, then using the empty set as the
initial set the dual optimal polynomial is the constant 1. That is, in this case we have no guidance
in choosing the first column.)

Since the auxiliary linear program (7) is a fully dense LP, and it becomes large as the number
of columns increases, the bottleneck of the algorithm becomes the iterative resolving of this linear
program. With the current linear programming software available it does not seem possible to
generate formulas with higher than a few thousand (perhaps 10,000) nodes, as this would involve
solving a series of LPs with up to tens of thousands of variables and constraints with a dense
constraint matrix. In our experiments we used formulas having not more than 2000 nodes;
these could be generated without difficulty. Numerical problems, in particular, ill-conditioning
in the LP (7) may arise during the generation of formulas that match high-order moments,
especially if we work with polynomials of high degree represented in the monomial basis. In our
computations we represented polynomials in the Legendre polynomial basis, which has better
numerical properties than the monomial basis.
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While generating all cubature formulas up to 2000 nodes with dimension up to 10, and var-
ious 100-dimensional formulas for the experiments of Section 5.4 we have not encountered any
instances where the CG-MC and CG-QMC methods required more than 1.3N iterations (that
is, generated columns) to find a formula matching the required N moments; in fact, in almost
every case the number of iterations was under 1.2N .

We also attempted to find formulas by solving the column generation subproblems to opti-
mality using exact global polynomial optimization. In these experiments we used the Gloptipoly
and SparsePOP packages [15, 31]. Except for problems of small dimension and low degree, the
running times of the exact polynomial optimization was prohibitive to be really useful, and in
many instances the solvers failed to return a solution. As a result, we believe that perhaps some
of these subproblems could be good benchmark problems for polynomial optimization software.

A comparison of CG-MC, CG-QMC, global optimization, and multi-start local optimization in
the generation of 3-dimensional formulas with degree of exactness 5 is given in Table 1. This was
the largest formula where global optimization using SparsePOP was possible. The multi-start
local optimization heuristic was to find local optima of the polynomial optimization problem
from random starting points until a suitable column is found. In our experiments we generated
the moment matching formulas obtained with the exact solution of the column generation sub-
problems for dimensions 2 and 3, matching all moments up to order 5. In all of these cases
the formulas obtained with global or local optimization had no fewer points than those obtained
using CG-MC and CG-QMC, and the number of iterations for the methods with global and
local optimization was also approximately the same as the number of iterations of CG-MC and
CG-QMC; Table 1 shows an example. The last two rows in the table show the total time spent
on the column generation steps and the time spent on the one column generation step that took
the longest. Clearly, some of the global optimization steps take an excessive amount of time,
resulting in an overall running time several orders of magnitude larger than the running time
of CG-MC and CG-QMC (and even multistart local optimization). These results suggest that
the effort necessary to solve the subproblems to optimality may not be worthwhile when both
the degree and the dimension are small, while global optimization is impossible with the existing
algorithms if either of these parameters is large.

Table 2 shows how CG-MC and CG-QMC compare to column generation with multistart local
optimization (CG-LO) as the dimension increases. CG-MC and CG-QMC are nearly indistin-
guishable, but CG-LO shows two notable differences: on one hand, the total running time of
CG-LO is considerably higher, owing to the excessive amount of time spent on the column gen-
eration steps. On the other hand, the number of columns generated (and, consequently, the time
spent on simplex iterations) is somewhat smaller than for CG-MC and CG-QMC. This suggests
that using optimization to find good columns may be worthwhile, but only if the optimization
steps could be accelerated substantially. On the other hand, even random sampling does very
well in generating good columns, and it does not generate too many columns that are unused
at the end. (Recall that the number of columns ultimately used is the same as the number of
moments matched.)

Because of the large difference in efficiency of the column generation oracles, in the numerical
experiments of the following sections we used only CG-MC and CG-QMC formulas, and compared
these to Monte Carlo and quasi-Monte Carlo sampling.

5.2. Integration problems. We follow the principles and recommendations laid out in Genz’s
paper [10], while adapting his popular experimental setup to the stochastic programming appli-
cations. We consider the following families of test functions, defined over the domain [0, 1]n:

Product peak: f1(x) =

n∏
i=1

(
a−2
i + (xi − ui)2

)−1
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Global opt. CG-MC CG-QMC Local opt.

# points in formula 56 56 56 56
# iterations 62 63 64 67
# simplex iterations 776 642 636 765

total simplex time (sec.) 0.031 0.032 0.078 0.063
total col. gen. time (sec.) 108.77 0.121 0.168 3.923
max. col. gen. time (sec.) 63.05 0.004 0.004 0.079

Table 1. Comparison of the iteration and time complexity of various column
generation heuristics when finding 3-dimensional formulas matching all moments
up to order 5. Global optimization was not possible while seeking larger formulas.

n K
# iterations # simplex iterations simplex time (sec.) total time (sec.)

MC QMC LO MC QMC LO MC QMC LO MC QMC LO

10 286 320 318 288 16630 17164 20762 6 6 4 2 4 129
12 455 512 505 465 45201 41994 56048 32 35 28 5 6 399
14 680 773 791 692 103240 98852 139828 189 201 153 14 16 1160
16 969 1104 1117 991 201766 202762 314921 871 896 723 31 40 3148
18 1330 1566 1547 1372 398926 394612 664315 4009 3669 2956 77 68 8386
20 1771 2117 2095 1794 761655 724454 2473023 11052 10307 15579 147 148 49411

Table 2. Comparison of the iteration and time complexity of three column
generation heuristics when finding n-dimensional formulas (n ≤ 20) matching
all moments up to order 3. Global optimization in the column generation was
impossible. Local optimization (LO) yields fewer column generation iterations,
but drawing random columns (MC) or quasi-random columns (QMC) is consid-
erably more efficient in terms of the total running time.

Corner peak: f2(x) =
(

1 +

n∑
i=1

a1zi

)−(n+1)

, with zi =

{
xi if ui < 1/2

1− xi if ui ≥ 1/2

Gaussian: f3(x) = exp
(
−

n∑
i=1

a2
i (xi − ui)2

)
Piecewise linear: f4(x) =

n∑
i=1

ai|xi − ui|

Discontinuous: f5(x) =

{
0 if x1 > u1 or x2 > u2

exp
(
−
∑n
i=1 aixi

)
otherwise

Each family is named after the particular property shared by its members. The exact values
of the integrals are easily found:∫

[0,1]n
f1(x) dx =

n∏
i=1

ai
(
tan−1(aiui) + tan−1(ai(1− ui))

)
,
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i 1 2 3 4 5

Bi 200 100 10 1000 50
di 2 3 1 2 2

Table 3. Test parameters used in Section 5.2.

∫
[0,1]n

f2(x) dx =

n∏
i=1

(1 + a1i)
−1,

∫
[0,1]n

f3(x) dx =

n∏
i=1

√
π(erfi(aiui)+erfi(ai(1−ui)))

2ai
,

∫
[0,1]n

f4(x) dx =

n∑
i=1

ai
(
u2
i − ui + 1/2

)
,

∫
[0,1]n

f5(x) dx =

2∏
i=1

(1− exp(−aiui)/ai
n∏
i=3

(1− exp(−ai)/ai.

The functions f1, f3, and f5 are from [10], the remaining two are also very similar to two of
Genz’s benchmark families. Some changes were made to further reduce bias introduced by the
chosen families, to include a piecewise linear function, and to avoid having integrals very close
to zero, which makes the relative errors overly sensitive to very small changes in the value of the
integrand.

Each family has two distinct sets of parameters. The unaffective parameters ui do not affect
the qualitative properties of the functions or the difficulty of numerical integration as long as
0 < ui < 1. We draw these parameters independently and uniformly from [0, 1] in order to
lower the bias introduced in the experiments by the choice of test functions. On the other
hand, the difficulty of integration increases as the affective parameters ai > 0 increase. To keep
the results of different experiments comparable, we draw each ai randomly, and then scale a
so that

∑
i |ai| = b for some fixed b depending on the function fi and the dimension n. It is

difficult to rigorously justify any particular choice of b. We chose them keeping two observations
in mind: (1) the integrals of the functions must be sufficiently non-zero in order to keep the
computation of relative errors stable, and (2) with the optimization applications in mind, the
cubature formulas to be tested have fewer nodes than what is customary in the numerical analysis
literature, meaning that the test functions need to be “easier” than usual—otherwise all formulas
will fare very badly, which renders the tests meaningless. Genz recommends computing b using
the formula b = Bi/n

di for the test function family fi and dimension n, for some the constants
Bi and di. We adopted this approach, our constants are shown in Table 3. These are similar to
those of Genz, except that the Bi are smaller, following observation (2) above.

We compared the two most popular and widely used scenario generation methods, Monte
Carlo sampling (MC) and quasi-Monte Carlo integration (QMC) to two variants of the column
generation (CG) method: the one using uniform random sample points in the column generation
step (CG-MC), and the one using Sobol points (CG-QMC).

The number of nodes in the MC and QMC methods were chosen to be equal to the number
of points in the CG methods, which is N(d, n) =

(
n+d
d

)
for n-dimensional problems with degree

of exactness d.
Each experiment (with a given fi and n) was carried out S = 200 number of times; the measure

of error is the relative error Erel. The statistics used in the tests are the median relative error
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and the m-th smallest and largest values (Lm and Um) of Erel; here m = m(S) is the smallest
number satisfying

C ≥ 1− 2−(S−1)
m−1∑
k=0

(
S

k

)
, C = 0.95;

this way the true sample median lies in [Lm, Um] with confidence C.
The computations were carried out using Matlab 2011a. For the QMC integration we used

the Sobol and the Halton low-discrepancy sequences as implemented by Matlab’s sobolset and
haltonset commands. There was no qualitative difference between the two (meaning, precisely
that whenever one of them performed significantly better or worse than MC or moment matching,
then so did the other). The results on Fig. 1 show the Sobol set.

To assess the performance of the different methods as the number of scenarios increases, we
fixed n = 4 and increased the degree of exactness of the moment matching formulas from 2 to
10. The median relative errors and their 95% confidence intervals are plotted on Fig. 1 for each
family. The numerical results in tabular form are shown in the Appendix (Table 9).

The tests are rather conclusive, and they support strongly the efficacy of the CG-MC and CG-
QMC formulas for each continuous function family. The MC method fell significantly behind all
of the other methods in every example. The QMC method performed considerably better, but
there is a clear difference between the rate of convergence of the QMC and the two moment
matching methods. Once their degree of exactness is at least 4, the moment matching formulas
significantly outperform both Monte Carlo and quasi-Monte Carlo integration with the same
number of points for each of the continuous families. The difference is most notable for the
Gaussian family, which contains the smoothest functions.

In the experiments with the discontinuous family each method had a poor rate of convergence,
with QMC being the most accurate of the five. This is expected, since on one hand QMC does
not exploit the smoothness of the integrand, and on the other hand the idea of moment matching
is based on the approximability of the integrands by polynomials of low degree. Based on the
results we do not recommend using moment matching formulas for discontinuous integrands.

The two moment matching formulas yielded nearly identical results in all the experiments.

5.3. Alternate distributions. We now consider examples where the underlying probability
distribution is different from uniform. In the optimization examples we will also have problems
with normal and lognormal density. In the rest of this section we carry out a more comprehensive
set of experiments to test whether the efficacy of the CG integration formulas changes with the
change of distributions. In Section 5.3.1 we concentrate on the normal distribution, as it has
prime importance in applications. In Section 5.3.2 we experiment with distributions of a wide
variety of shapes, with the help of the logit-normal distribution family.

5.3.1. Multinormal distribution. We repeated the same experiments as in Section 5.2 after chang-
ing the distribution from uniform to multivariate normal. We chose a normal distribution N(µ,Σ)
with an arbitrary mean vector µ and covariance matrix Σ, with only one condition in mind: since
the test functions are all defined on the unit cube [0, 1]n, we chose a distribution whose mass
is largely concentrated on the unit cube. This way it is irrelevant how the test functions are
extended outside [0, 1]n, and the qualitative properties of the test functions are unaffected by
such an extension. (We simply defined each function to be zero outside the unit cube.) With
this condition in mind we chose the following parameters:

µ =


.4
.4
.4
.4

 , Σ =
1

300


4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

 .
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Figure 1. Performance of four cubature formulas using the four-dimensional
parametric families f1–f5 with uniform density. Horizontal axis: number of
points used in the formulas; the points correspond to increasing degree of ex-
actness of the CG-MC and CG-QMC formulas from 2 to 10. Vertical axis:
base-10 logarithm of the median relative errors from 200 experiments. The gray
shaded bands around the median relative errors are 0.95-level confidence inter-
vals around the median. Note the differences on the vertical axes, and that on
some of the figures the CG-MC and CG-QMC results are practically indistin-
guishable.

The experimental setup was identical to that of Section 5.2, we do not repeat the details. The
only difference is that with the change in the distribution the true values of the integrals are
no longer available in closed form; they need to be numerically approximated using a large-scale
formula. The results are summarized in Fig. 2; and in tabular form in the Appendix (Table 10).

The results of the Discontinuous family are inconclusive again; all methods performed badly
for these problems. In the other families moment matching outperformed Monte Carlo and quasi-
Monte Carlo integration whenever there were enough points to match all moments of order up to
4 or higher. The advantage of CG-MC and CG-QMC appears to be smaller than in the uniform
example, but the difference is still significant.
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Figure 2. Performance of four cubature formulas using the four-dimensional
parametric families f1–f5 with normal density. Horizontal axis: number of points
used in the formulas; the points correspond to increasing degree of exactness
of the CG-MC and CG-QMC formulas from 2 to 10. Vertical axis: base-10
logarithm of the median relative errors from 200 experiments. The gray shaded
bands around the median relative errors are 0.95-level confidence intervals on
the median.

5.3.2. Distributions with various shapes. We adapted the experimental setup of Section 5.2 and
compared the CG methods to MC and QMC integration in problems where the integration is
with respect to probability measures of various shapes.

We used random density functions from the multivariate logit-normal distribution family. Let
µ ∈ Rn be arbitrary n-vector, and Σ be an n × n symmetric positive definite matrix. Then the
logit-normal distribution LN(µ,Σ) is the one obtained by applying coordinatewise the logistic
function t 7→ (1 + exp(−t))−1 on the multivariate normal distribution with mean vector µ and
covariance matrix Σ. Logit-normal distributions are supported on the unit hupercube, and take
a wide variety of shapes (Fig. 3), including convex and non-convex unimodal, symmetric and
asymmetric U-shaped, bimodal, and skewed unimodal shapes, hence are ideal for our experiments.

We created random four-dimensional logit-normal distributions LN(µ,Σ) by drawing random
vectors uniformly from {0, 1}4 for µ, and drawing random covariance matrices Σ with diagonal
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Figure 3. Shapes of the univariate logit-normal distribution: the probability
density functions of LN(µ, σ2) are depicted for µ ∈ {0, 1} and σ ∈
{3/4, 5/4, 7/4, 9/4}.

entries in {3/42, 5/42, 7/42, 9/42}. These parameters correspond to those shown on Fig. 3. For
each generated distribution we repeated a simplified version of the experiments of Section 5.2.

With the change in the distribution the true values of the integrals are no longer available in
closed form; they need to be numerically approximated using a large-scale formula. Additionally,
the number of four-dimensional shapes is also large. Hence, the number of computed integrals
had to be lowered substantially for the experiments to run in reasonable time. Because of this we
considered only the first (Product Peak) function family. We experimented with 5000 random
distributions, and integrated against each of them 100 random functions from the Product Peak
family using both variants of the CG method, and the MC and QMC methods. The degree of
exactness of the CG methods were varied between 3 and 10, and for each degree we compared
the corresponding CG-MC and CG-QMC formulas to the MC and QMC formulas of the same
size, in order to compare the performance of the methods as the number of points increases. The
total CPU time used for the experiments exceeded 400 hours, largely due to the time required
to satisfactorily estimate the true values of the integrals. For each of the 5000 distributions
the median relative errors from the 100 experiments were computed, along with a 0.95-level
confidence interval on the median along the same lines as in Section 5.2. Table 4 shows the
summary statistics of the experiments; the acronyms in the table are explained next:

(1) We say that in the experiments with a given distribution CG performed significantly
better starting at degree d (abbreviated “SB@d”) if the median relative errors of both
variants of the CG method were significantly lower (at confidence level 0.95) than the
median relative errors of the MC and QMC estimates of the integral whenever the degree
of exactness of the CG formulas were d or higher. This, with a low degree d, is the best
possible result we could have, as it means that once a certain degree of exactness can
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be reached by the CG method, it continues to outperform both Monte Carlo and quasi-
Monte Carlo formulas of the same size.

(2) A weaker conclusion is reached when the median relative errors of both CG methods
are lower than the median relative errors of both MC and QMC for every degree d and
higher, but the difference is not always significant at level 0.95. In these experiments
we say that CG performed better, but not significantly than MC and QMC; abbreviated
“BNS@d”.

(3) “SW”, for significantly worse, denotes the cases that do not belong to any of the above
categories, and where for at least one degree d ≥ 4, at least one variant of the CG method
had a significantly higher median relative error than either MC or QMC. Note that we
require much less from MC and QMC to declare them “better” than what we require
from our method.

(4) “WNS”, for worse, but not significantly, denotes all the yet uncovered cases where for
at least one degree d ≥ 4, at least one variant of the CG method had a higher median
relative error than either MC or QMC, although the difference was not significant.

(5) “IC”, for inconclusive denotes the remaining cases.

outcome type # occurrences

SB@4 2893
SB@5 916
SB@6 549

BNS@4 508
BNS@5 66
BNS@6 48

SW 0
WNS 3

IC 17

Table 4. The distribution of outcomes from the numerical integration exper-
iments with 5000 different logit-normal distributions. The acronyms denoting
the various outcomes are explained in the text of Section 5.3.2.

Raw data from the experiments are available from the authors. The numbers in Table 4
clearly show that for nearly all distributions the CG methods outperformed both MC and QMC,
in approximately 87% of the distributions the advantage of CG was significant. There were no
examples when MC or QMC outperformed the column generation formulas. CG-MC and CG-
QMC appears to outperform MC and QMC integration for a wide variety of shapes as long as
there are enough points in the formulas to match all moments up to order 4.

5.4. Selective moment matching. For high-dimensional problems all moments up to a high
order cannot be matched with as few scenarios as in the experiments above, but this may not
even be necessary. We considered the following “sparse” variants of the Genz test functions,
which do not contain products of univariate functions of non-adjacent variables.

Product peak: g1(x) =

n−1∑
i=1

(
a−2
i + (xi − ui)2

)−1(
a−2
i+1 + (xi+1 − ui+1)2

)−1
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Corner peak: g2(x) =

n−1∑
i=1

(
1 + aizi + ai+1zi+1

)−3

, with zi =

{
xi if ui < 1/2

1− xi if ui ≥ 1/2

Gaussian: g3(x) =

n−1∑
i=1

exp
(
− a2

i (xi − ui)2 − a2
i+1(xi+1 − ui+1)2

)
Piecewise linear: g4(x) =

n∑
i=1

ai|xi − ui|

Discontinuous: g5(x) =

{
0 if x1 > u1 or x2 > u2∑n−1
i=1 exp

(
− aixi − ai+1xi+1

)
otherwise

In this subsection we concentrate on the integration of these functions; see the next subsection
for actual optimization models involving one of these integrals.

Note that since f4 is already a sum of univariate functions, g4 was chosen to be the same
as f4. We ran the same experiments using each of the above gi as in the previous section,
but this time with n = 100. For every given degree d, 2 ≤ d ≤ 6, we used the CG-MC and
CG-QMC methods to generate cubature formulas that match all the moments corresponding to
monomials of the form xai x

b
i+1 with a + b ≤ d; with a slight abuse of terms in this subsection

we call d the degree of exactness of these formulas, although only a subset of the moments of
order d and lower are matched. Otherwise the experimental setup was identical to those in the
previous experiments. The results are shown on Fig. 4. The qualitative differences between the
Monte Carlo, quasi-Monte Carlo, and column generation approaches appears to be same in each
function family for dimension 100 as it was for the four-dimensional problems: CG-MC and
CG-QMC are comparable across all the experiments, and they both outperform QMC, which in
turn outperforms the MC integration in all the continuous families. QMC outperforms CG for
the Discontinuous family. The largest difference is measured for the Gaussian family.

5.5. Convex optimization problems. The functions gi from the previous section may also
be used as benchmark problems for stochastic optimization, or equivalently, of optimization of
integrals. With the affective parameters aj fixed, the unaffective parameters ui can be treated
as decision variables; the problem then is to find

min
u∈[0,1]n

∫
[0,1]n

gi(u, x)dx or max
u∈[0,1]n

∫
[0,1]n

gi(u, x)dx. (11)

Note that whether the resulting problems are convex depends on both the function gi used
as well as on the values of the affective parameters. The problems involving g2 and g5 are
particularly interesting (and difficult), as they are stochastic integer programming problems.
To keep things simple, we considered below the problem involving g3, whose maximization is
a concave maximization problem for every value of the affective parameters aj , with an easily
identifiable global maximum.

The experimental setup was identical to that in the previous section. We considered n = 100;
the values of the affective parameters and the number of experiments were unchanged. The
cubature formulas were used as approximators of the integrand in Matlab’s SQP optimization
routine. The relative error reported for the Monte Carlo method is the average relative error
from 100 repeated experiments, the quasi-Monte Carlo implementation uses the Sobol sequence.
As expected, the MC, QMC, and CG-QMC methods all find the approximate global optimum,
but the relative errors in the approximation and the empirical rates of convergence are quite
different: the MC and QMC formulas gain about one significant digit of precision while the
CG-QMC formula gains about two. The relative errors using degrees d = 2, . . . , 6 are shown in
Table 5.
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Figure 4. Performance of four cubature formulas using the 100-dimensional
parametric families g1–g5. Horizontal axis: number of points used in the formu-
las; the points correspond to increasing degree of exactness of the CG-MC and
CG-QMC formulas from 2 to 6. Vertical axis: base-10 logarithm of the median
relative errors from 200 experiments. The gray shaded bands around the median
relative errors are 0.95-level confidence intervals on the median.

5.6. Stochastic programming problems. We compared the same methods as in Section 5.5
on the two benchmark problems proposed in [2].

5.6.1. Markowitz model. This example was used by Pennanen and Koivu [23] for comparing the
MC and QMC methods of scenario generation. With our notation the well-known Markowitz
portfolio optimization model can be cast as follows:

min
x∈X

∫
Rn

(ξTx−mTx)2µ(dξ), X =
{
x ∈ Rn+

∣∣∣ ∑
i

xi ≤ 1,mTx ≥ R
}
,

The parameters in [23] are n = 3, R = 0.011, and µ ∼ N(m,V ) normally distributed with mean
m = (0.0101110, 0.0043532, 0.0137058), and covariance matrix

V =
(

0.00324625 0.00022983 0.00420395
0.00022983 0.00049937 0.00019247
0.00420395 0.00019247 0.00764097

)
.
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d K MC QMC CG-QMC

2 300 1.243 · 10−2 9.663 · 10−3 2.402 · 10−2

3 598 6.425 · 10−3 6.022 · 10−3 2.047 · 10−2

4 995 4.161 · 10−3 3.183 · 10−3 5.070 · 10−4

5 1491 3.121 · 10−3 1.699 · 10−3 1.148 · 10−3

6 2086 2.627 · 10−3 9.005 · 10−4 2.846 · 10−4

Table 5. Relative errors of the approximate solutions to the problem
maxu∈[0,1]100

∫
[0,1]100

g3(u, x)dx, as a function of the degree of exactness d. The

number of scenarios K is also shown.

d K MC QMC CG-MC CG-QMC

2 10 0.3727 0.6720 0.1489 0.0826
4 35 0.1839 0.2537 0.0184 0.0970
6 84 0.1431 0.1216 0.0313 0.0170
8 165 0.0822 0.0720 0.0015 0.0057

10 286 0.0623 0.0464 0.0117 0.0135
12 455 0.0519 0.0302 0.0038 0.0094
14 680 0.0420 0.0239 0.0044 0.0026
16 969 0.0317 0.0156 0.0025 0.0023

Table 6. Relative errors of the approximate solutions to the Markowitz model,
as a function of the degree of exactness d. The number of scenarios K =

(
d+4

4

)
is also shown.

The true optimal objective function value is easily found to be ≈ 3.7853 · 10−3. After replac-
ing the integral with the approximation given by the various cubature formulas, the resulting
optimization problems were solved. The degree of exactness of the CG-MC and CG-QMC cuba-
ture formulas was varied between 2 and 16. For comparison, we also generated MC and QMC
formulas with the same number of scenarios.

We compared the relative errors in the optimal objective function values, the results are
reported in Table 6. The entries in the MC column are averages of 100 independent runs of Monte
Carlo sampling. As in the previous sections, Monte Carlo sampling performed very poorly, and
quasi-Monte Carlo also fell behind the moment matching methods. The difference between the
performances of the CG-MC, CG-QMC methods appears insignificant, both achieve a relative
error less than 1% with only 364 scenarios.

5.6.2. Utility maximization model. Our next problem, also from [23] and [2], is somewhat more
complicated. The goal is to determine a portfolio of n assets that maximizes the expected value
of an exponential utility function. The returns of the stocks are random with a joint lognormal
distribution. In our notation the optimization model is the following:

min
x∈X

∫
Rn

exp(−ξTx)µ(dξ), X =
{
x ∈ Rn+

∣∣∣ ∑
i

xi ≤ 1
}
,

with µ corresponding to a lognormal density.
In [2] this model was solved approximately by several methods for n = 6, and for a joint

lognormal distribution with a randomly drawn mean and covariance matrix. Table 7 shows the
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m = ( 1.186573284 1.271987547 1.262317169 1.165045884 1.050464674 0.990708953 )

H =

 0.171633 0.269857 0.108958 0.172031 0.127180 0.234007
0.158851 0.161127 0.157614 0.189621 0.143484 0.295287
0.237658 0.245012 0.255039 0.261027 0.227806 0.127998
0.105797 0.186469 0.254520 0.165738 0.213629 0.193843
0.278903 0.142303 0.275562 0.217241 0.175747 0.110844
0.242071 0.165333 0.217824 0.234243 0.104976 0.276837


Table 7. The mean vector m and the square root H of the covariance matrix
corresponding to the lognormal distribution used in the Utility Maximization
example of [2].

d K MC QMC CG-MC CG-QMC

2 28 0.1994 0.1817 0.0683 0.0102
3 84 0.1139 0.1130 0.0037 0.0726
4 210 0.0661 0.0626 0.0057 0.0015
5 462 0.0457 0.0319 0.0010 0.0019
6 924 0.0299 0.0189 0.0070 0.0028
7 1716 0.0245 0.0078 0.0044 0.0037

Table 8. Relative errors of the approximate solutions to the Utility maximiza-
tion model, as a function of the degree of exactness d. The number of scenarios
K =

(
d+6

6

)
is also shown.

values of these parameters. The problem cannot be solved analytically; the optimal objective
function value is equal to 0.0553 up to three significant digits.

The experimental setup was identical to that of the previous example, except that dimension
of the formulas is increased to six. The relative errors of the optimal objective function values
are shown in Table 8 for each method. The degree of exactness of the moment matching methods
was increased up to d = 7.

As in the previous example, moment matching has a clear advantage over MC and QMC
methods using the name number of scenarios. Monte Carlo did especially poorly.

5.7. The running time of formula generation. We examined the distribution of the number
of simplex iterations between the outer (column generation) iterations, and also the total number
of simplex iterations used by the column generation algorithms. The results from CG-MC and
CG-QMC were essentially identical, below we show results obtained using CG-QMC only.

First we generated CG-QMC formulas with up to 2000 nodes and plotted the number of
simplex iterations against the number of moments matched; the results show an empirical O(N2)
total number of simplex iterations (Figure 5) for formulas matching N moments.

5.8. Sensitivity of column generation to precision of moment matching. The stopping
condition of the Algorithm 1 is that the optimal objective function value of the auxiliary LP (7)
is less than some parameter ε > 0. The question naturally arises how sensitive the method is to
the value of this parameter.

Our experiments showed a somewhat surprising insensitivity: we generated CG-QMC formulas
for dimensions 4–10 and degree 4–10 with up to 2000 points with two (rather extreme) values of
ε: 10−1 and 10−10. For each dimension and degree the number of iterations CG-QMC needed
to find the corresponding two formulas differed by no more than 10% for these two values of ε.
Comparing the results of two less extreme values, ε = 10−4 and ε = 10−10 we found that there
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Figure 5. The number of simplex iterations i and the number of matched
moments, N for formulas with N ≤ 2000. The vertical axis shows i1/2.

was only a single case in which there was a difference in the number of iterations: for dimension
4 and degree 10 two additional columns were needed to reach ε = 10−10 precision from ε = 10−4;
in all the other cases there was no difference in the number of iterations.

The formulas used in our numerical experiments were generated using ε = 10−10.

6. Conclusion

Our novel, optimization based, approach to moment matching scenario generation is promising.
It is more flexible than the traditional moment matching cubature formulas. It can be generalized
to obtain cubature formulas that are exact in any given finite dimensional functional space other
than spaces of polynomials. This may be useful for problems where functions from a specific
space (or functions that can be approximated well by functions from a specific space) need to
be integrated repeatedly. Our approach also allows to match some (say, the low order) moments
exactly, while only bounding other (say, the higher order) moments. Both of these extensions
require only simple changes in the semi-infinite LP formulation.

Furthermore, the method guarantees that the weights of the formulas are positive, and that
the number of points in the formula does not exceed the number of moments to be matched. The
proposed approach will be effective when the moment matching formulas are generated, saved,
and reused. This is the case, for example, when a formulated stochastic optimization model of a
fixed dimension is solved multiple times in an application.

The optimization model for the moment matching scenario generation with positive weights is
a semi-infinite LP, which in turn can be solved to the desired accuracy using a column generation
(dual cutting plane) procedure with polynomial iteration complexity.

The column generation procedure was implemented within the simplex method framework,
and the empirical results suggest that the number of columns needed to find an acceptable
solution of the semi-infinite LP is in the order of the number of moments required to be matched.

The column generation subproblem can be formulated as a multivariate polynomial optimiza-
tion problem, which is NP-hard. The popular approach of using sum-of-squares approximations
to global polynomial optimization did not prove to be useful for these problems, because the
current implementations cannot solve the subproblems when the dimension or the degree is high.
Instead of global polynomial optimization we used a sampling based technique to generate ac-
ceptable columns in our algorithm. A Monte Carlo and a quasi-Monte Carlo variant of the
sampling technique were tested. The numerical results show that the number of columns needed
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to solve the semi-infinite LP using the sampling technique is almost the same as those needed if
the column generation subproblem is solved to optimality.

We found that the total number of simplex iterations required to generate the moment match-
ing formulas grows quadratically with the number of moments to be matched. However, using a
single computer we were able to generate formulas matching about 3000 moments using CPLEX
in about 3 days wall clock time. Formulas matching less than 1000 moments could be generated
considerably faster, mostly in a few minutes. While this cannot compete with the running time
of (quasi-)Monte Carlo methods, these are acceptable running times for a preprocessing step.

The technique of selective moment matching was used to generate formulas for structured
integration and stochastic optimization problems with up to 100 variables, matching a subset
of the moments up to order six, using 3000 moments. On six-dimensional problems, where all
moments are matched, we generated formulas up to degree seven.

Using problems from both the numerical integration literature and the stochastic optimization
literature we found that when the order of moments matched is at least four and the integrands
are continuous, the moment matching formulas generated by our technique give significantly
better numerical accuracy than possible by sample average approximation obtained using either
Monte Carlo and quasi-Monte Carlo sampling. For discontinuous integrands neither of the tested
methods were adequate.

When comparing different scenario generation methods, one may reasonably ask not only
which method yields the best results with a given number of scenarios (the approach taken in
the present paper), but also which method yields the best results for a given computational
budget. This question can be relatively easily studied in the integration setting, but the op-
timal trade-off between scenario generation and optimization merits a separate computational
study. In numerical integration it is relatively easy to both generate a very large number of
(quasi-)Monte Carlo sample points, and evaluate the resulting approximation of the integral fast.
(For smooth integrands it is still possible that moment matching scenarios outperform extremely
large scale Monte Carlo simulations; recall the Gaussian example from Section 5.2.) We see the
primary advantage of moment matching scenarios in settings where scenarios are generated as a
preprocessing step, and are reused many times; and also in settings when it is necessary to get
the best possible approximation with a small number of scenarios. In particular, in stochastic
optimization, the integrand (and its derivatives) may need to be evaluated a large number of
times, and the use of a large number of scenarios may be prohibitive. This is especially the case
when the number of decision variables is very large, but the number of random variables is small
enough so that most important moments can be matched.

A number of questions require further study, we shall outline two of them. It might be useful to
study the properties of the polynomial optimization problems generated by this application, and
develop improved algorithms for global polynomial optimization, since the existing algorithms
could not solve any but the simplest polynomial optimization subproblems. Second, the reason
for the large computation times required by CPLEX is that the linear optimization problems
arising in the computation are dense. Given the scientific importance of the application, it
would be useful to develop more efficient numerical methods for finding solutions to such linear
programs.
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Tables corresponding to Figures 1 and 2

Product peak

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.3463 0.2854 0.3872 0.208 0.1835 0.25 0.1538 0.1295 0.187 0.1859 0.1559 0.2108
35 0.2817 0.2557 0.3216 0.2136 0.188 0.2445 0.1331 0.1164 0.1462 0.1322 0.1118 0.1505
70 0.1281 0.1095 0.1523 0.05177 0.04664 0.05908 0.02946 0.02417 0.03664 0.03514 0.03023 0.03783

126 0.1278 0.1071 0.1501 0.04829 0.04062 0.05965 0.01628 0.01292 0.01885 0.01637 0.01445 0.01951
210 0.0806 0.06564 0.09127 0.02809 0.02252 0.03291 0.008971 0.007606 0.01068 0.008758 0.007598 0.01003
330 0.1133 0.0936 0.1333 0.03007 0.02689 0.03434 0.004578 0.003949 0.005504 0.004427 0.003565 0.005498
495 0.07524 0.06288 0.08461 0.009937 0.008661 0.01217 0.002759 0.002183 0.003149 0.002702 0.002267 0.003176
715 0.07219 0.05999 0.0782 0.01108 0.009606 0.01352 0.001337 0.001125 0.001663 0.001226 0.0009905 0.00161

1001 0.0435 0.03576 0.05277 0.004277 0.003163 0.005077 0.0007913 0.0006827 0.0009893 0.0007903 0.0006169 0.0008943

Corner peak

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.4467 0.3858 0.4883 0.4002 0.4002 0.4802 0.2922 0.2694 0.3342 0.2901 0.2901 0.3558
35 0.3913 0.3524 0.4541 0.4002 0.3934 0.4002 0.201 0.1258 0.2622 0.1624 0.1443 0.1844
70 0.2795 0.2516 0.3046 0.2143 0.1144 0.2186 0.06432 0.06247 0.06697 0.06534 0.0609 0.07433

126 0.2899 0.2433 0.3274 0.2143 0.1144 0.2186 0.01707 0.01703 0.01893 0.03411 0.02486 0.03906
210 0.1943 0.1673 0.2356 0.08203 0.04844 0.1307 0.01308 0.01308 0.01555 0.02591 0.02146 0.02833
330 0.1848 0.1605 0.233 0.1307 0.08203 0.1429 0.01121 0.007872 0.01187 0.009518 0.008969 0.009522
495 0.1366 0.1203 0.152 0.07534 0.05106 0.09329 0.006417 0.006064 0.006623 0.005359 0.004498 0.005367
715 0.1202 0.1082 0.1359 0.09329 0.05739 0.1377 0.002272 0.001655 0.002547 0.002336 0.001916 0.002698

1001 0.09395 0.07431 0.1123 0.04501 0.03978 0.05744 0.0008197 0.0006886 0.001243 0.001475 0.001004 0.001563

Gaussian

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.04667 0.03935 0.05328 0.02649 0.02256 0.03172 0.005678 0.005371 0.005921 0.006126 0.005672 0.006839
35 0.04369 0.0366 0.05336 0.02452 0.02192 0.02815 0.003973 0.003765 0.004097 0.004016 0.003797 0.004278
70 0.01969 0.01664 0.02305 0.00768 0.006875 0.008927 0.00005117 0.00004383 0.00006146 0.00006445 0.00005603 0.00007782

126 0.02622 0.02067 0.03053 0.008161 0.006849 0.009208 0.00001009 8.794·10−6 0.000012 9.559·10−6 8.56 · 10−6 0.00001124

210 0.01452 0.01125 0.01657 0.003869 0.00337 0.004772 1.169 · 10−6 8.009·10−7 1.527·10−6 1.548·10−6 1.254·10−6 1.925·10−6

330 0.01434 0.01245 0.01633 0.003231 0.002718 0.003645 2.678·10−7 2.296·10−7 3.177·10−7 2.143·10−7 1.707·10−7 2.911·10−7

495 0.009248 0.008249 0.01086 0.00169 0.001462 0.001874 1.307·10−8 1.053·10−8 1.634·10−8 2.34·10−8 1.595·10−8 3.048·10−8

715 0.009906 0.008377 0.01173 0.001639 0.001482 0.001854 1.478·10−9 1.249·10−9 1.908·10−9 3.006·10−9 2.598·10−9 3.39·10−9

1001 0.005992 0.005214 0.006676 0.0007519 0.0005886 0.000903 1.674·10−10 1.219·10−10 2.466·10−10 2.771·10−10 1.914·10−10 3.594·10−10

Piecewise Linear

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.08149 0.06023 0.09901 0.05466 0.04897 0.06105 0.01705 0.01374 0.01912 0.02123 0.01761 0.02459
35 0.0887 0.07537 0.1063 0.05016 0.04177 0.05729 0.01352 0.0121 0.01521 0.01317 0.01226 0.01547
70 0.04652 0.0387 0.05427 0.01446 0.0133 0.01672 0.00204 0.001818 0.002704 0.003394 0.002646 0.003732

126 0.03927 0.03368 0.04524 0.01421 0.01198 0.01751 0.001468 0.001148 0.00167 0.001339 0.001088 0.001549
210 0.02977 0.02493 0.03607 0.006155 0.005353 0.007327 0.001277 0.001095 0.001462 0.0007851 0.0006838 0.000986
330 0.0312 0.02842 0.03508 0.005594 0.004715 0.006597 0.0005521 0.0004543 0.0006913 0.0006559 0.0005175 0.0008025
495 0.01714 0.01459 0.02044 0.003792 0.003512 0.004353 0.0006317 0.0005658 0.0007425 0.0005539 0.0004719 0.0006443
715 0.02086 0.01787 0.02388 0.003321 0.002757 0.003782 0.0003409 0.0002765 0.0004231 0.0003793 0.0003134 0.0004425

1001 0.01247 0.01056 0.01482 0.001496 0.001281 0.00161 0.0003105 0.0002787 0.0003587 0.0002666 0.0002258 0.0003364

Discontinuous

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.5922 0.4962 0.75 0.5827 0.4249 0.6856 0.3211 0.2698 0.3952 0.2965 0.2572 0.358
35 0.5847 0.4346 0.7665 0.5793 0.3886 0.6942 0.1925 0.1622 0.2323 0.2521 0.2141 0.2855
70 0.2494 0.215 0.2821 0.2063 0.1519 0.2473 0.09838 0.08107 0.1353 0.1038 0.077 0.1297

126 0.2424 0.2127 0.3004 0.1772 0.1357 0.2299 0.05864 0.05323 0.08268 0.05518 0.04165 0.07422
210 0.1559 0.1194 0.189 0.04276 0.03419 0.05739 0.04287 0.03543 0.05446 0.04499 0.03486 0.05184
330 0.1653 0.1225 0.199 0.03442 0.02659 0.04617 0.0304 0.01964 0.039 0.03086 0.02568 0.03693
495 0.1098 0.09322 0.1338 0.04309 0.03174 0.05711 0.03061 0.02409 0.03893 0.02483 0.01923 0.03222
715 0.08947 0.07696 0.1225 0.03802 0.02571 0.05175 0.0193 0.0143 0.02569 0.02366 0.01965 0.0288

1001 0.08703 0.06876 0.1061 0.01778 0.01242 0.02426 0.02151 0.01761 0.02649 0.02034 0.01671 0.02586

Table 9. Median relative errors (“median”) and 95% level confidence inter-
vals ([lb, ub]) around the median for the relative errors from the experiments of
Section 5.2. Table corresponds to Figure 1 in the main text.
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Product peak

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.06462 0.05457 0.08005 0.03081 0.02546 0.03829 0.02288 0.01944 0.02902 0.02638 0.02055 0.03047
35 0.04787 0.03975 0.05579 0.02376 0.02033 0.02928 0.01695 0.01418 0.02089 0.01416 0.01151 0.01766
70 0.03467 0.02716 0.04284 0.01758 0.01606 0.02083 0.004815 0.003976 0.005428 0.004946 0.004242 0.005751

126 0.02182 0.01865 0.02595 0.01148 0.0103 0.01309 0.002987 0.002333 0.003645 0.001572 0.001301 0.001918
210 0.01738 0.01422 0.02199 0.00923 0.007461 0.01069 0.001537 0.001248 0.001905 0.001287 0.001051 0.001636
330 0.01385 0.01084 0.01697 0.007623 0.006214 0.009252 0.00111 0.0008496 0.001233 0.001469 0.001282 0.00171
495 0.01152 0.009403 0.01508 0.002545 0.002087 0.002868 0.0008808 0.0007329 0.001016 0.000523 0.0004381 0.000623
715 0.009505 0.007576 0.01212 0.002263 0.001948 0.002768 0.0007089 0.0005633 0.0007992 0.000782 0.0006596 0.0009075

1001 0.01018 0.008856 0.01163 0.001811 0.001524 0.002071 0.000691 0.0005963 0.0007779 0.0004623 0.0003816 0.0005299

Corner peak

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.05341 0.04626 0.06248 0.02488 0.02256 0.02608 0.02471 0.02308 0.02888 0.02842 0.02762 0.03371
35 0.03668 0.031 0.04355 0.01657 0.01369 0.01882 0.008766 0.005935 0.01262 0.01443 0.01349 0.01443
70 0.02753 0.02344 0.03305 0.00977 0.007317 0.01744 0.004217 0.0039 0.004218 0.004599 0.004204 0.005412

126 0.01883 0.01633 0.02258 0.007043 0.005444 0.008056 0.003112 0.00253 0.003897 0.00174 0.00151 0.002301
210 0.01184 0.01048 0.015 0.003958 0.003854 0.006104 0.002735 0.002294 0.003436 0.001199 0.0009341 0.001216
330 0.00898 0.006941 0.01035 0.003476 0.002544 0.005349 0.0009952 0.0007781 0.001068 0.001316 0.001067 0.002398
495 0.009268 0.007673 0.01069 0.001745 0.001486 0.002911 0.0008056 0.0005491 0.001276 0.0009148 0.0008961 0.0009967
715 0.007002 0.00572 0.008755 0.001514 0.001486 0.002187 0.0006757 0.0006069 0.0009516 0.0009591 0.0007343 0.001102

1001 0.006737 0.005397 0.008116 0.00144 0.0009931 0.001663 0.0007662 0.0006985 0.0008003 0.0004113 0.0003536 0.0008793

Gaussian

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.009353 0.007571 0.01109 0.005997 0.005807 0.006308 0.005371 0.004413 0.006271 0.004727 0.004081 0.00553
35 0.006629 0.0055 0.008428 0.003508 0.003017 0.004356 0.009063 0.008429 0.009894 0.003472 0.003283 0.003655
70 0.004637 0.003897 0.005612 0.002716 0.002285 0.003019 0.001065 0.0009855 0.001156 0.0004988 0.0004024 0.000583

126 0.003353 0.002625 0.004155 0.001624 0.001414 0.001774 0.0003094 0.0002823 0.0003969 0.0003557 0.0003054 0.0004311
210 0.002494 0.002144 0.002971 0.001127 0.0008906 0.001385 0.0002952 0.0002469 0.0003722 0.0001551 0.0001369 0.0001974
330 0.001977 0.001738 0.002627 0.001063 0.0009251 0.001204 0.0003408 0.0003249 0.0003677 0.0003167 0.0002742 0.0003496
495 0.00143 0.001145 0.001657 0.0003649 0.000326 0.0004096 0.0001708 0.0001492 0.0001997 0.000184 0.0001615 0.0002055
715 0.001367 0.001152 0.001749 0.0003629 0.0003066 0.0004077 0.0001573 0.0001495 0.000166 0.000163 0.000146 0.0001749

1001 0.001167 0.0008677 0.001365 0.000273 0.0002275 0.0002963 0.0001325 0.0001165 0.0001421 0.0001326 0.0001263 0.0001401

Piecewise Linear

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.02251 0.01833 0.02715 0.007676 0.005766 0.009748 0.01358 0.01151 0.0162 0.01316 0.01069 0.0152
35 0.0187 0.015 0.02361 0.007237 0.005621 0.008287 0.01969 0.0181 0.02252 0.006172 0.004572 0.007356
70 0.01151 0.009367 0.01307 0.00614 0.00487 0.007191 0.001804 0.001375 0.002356 0.001571 0.001383 0.00182

126 0.00911 0.007777 0.01059 0.003595 0.002924 0.004017 0.001225 0.001057 0.001425 0.0009088 0.0007276 0.001003
210 0.00717 0.006024 0.009021 0.00304 0.002606 0.003471 0.001024 0.0008881 0.001155 0.0005501 0.0004623 0.0006428
330 0.005397 0.00407 0.006764 0.002691 0.002338 0.003095 0.0007018 0.0006411 0.0008392 0.0005951 0.0005027 0.0007343
495 0.00398 0.003464 0.005029 0.0006388 0.0005443 0.00075 0.0003778 0.0002874 0.0004867 0.0004086 0.0003568 0.0004454
715 0.00431 0.00367 0.004989 0.0008225 0.0006884 0.0009422 0.0002643 0.0002065 0.0002916 0.0003925 0.0002957 0.0004652

1001 0.002946 0.002654 0.003639 0.0005358 0.0004328 0.0006448 0.0001999 0.0001643 0.0002566 0.0001968 0.000174 0.0002287

Discontinuous

MC QMC CG-MC CG-QMC
K median lb ub median lb ub median lb ub median lb ub

15 0.5316 0.3162 1.000 0.3507 0.2068 1.000 0.385 0.2979 1.000 0.3576 0.2087 0.8926
35 0.1936 0.1267 0.2941 0.06773 0.05593 0.09592 0.2291 0.181 0.3021 0.2062 0.12 0.268
70 0.1433 0.1001 0.2314 0.08095 0.05489 0.1626 0.07698 0.05409 0.1221 0.07961 0.05749 0.1247

126 0.1093 0.06626 0.1667 0.04186 0.02573 0.1198 0.05347 0.0286 0.1049 0.05086 0.02728 0.06521
210 0.1164 0.07628 0.1907 0.08513 0.05122 0.1569 0.05447 0.03904 0.08998 0.09227 0.06793 0.1249
330 0.1023 0.06139 0.1877 0.07267 0.04396 0.183 0.09262 0.04801 0.1566 0.1063 0.04321 0.1765
495 0.07343 0.05455 0.1235 0.06277 0.03591 0.09868 0.05265 0.0329 0.08735 0.05513 0.03059 0.08651
715 0.0623 0.04153 0.1199 0.06167 0.03368 0.09805 0.06622 0.03413 0.1052 0.06854 0.03762 0.1073

1001 0.06996 0.04219 0.1003 0.06994 0.03463 0.1005 0.07995 0.05134 0.1092 0.06177 0.03791 0.09764

Table 10. Median relative errors (“median”) and 95% level confidence inter-
vals ([lb, ub]) around the median for the relative errors from the experiments of
Section 5.3.1. Table corresponds to Figure 2 in the main text.
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