

OPTIMIZATION & NONLIN EQS (MA 784) — HW 2

Unconstrained minimization; first order methods.

INCOMPLETE HW — I will add approx. 1 more problem, but these are posted so that you can get started. **Due on February 19 (Thursday), by the start of the class.** Please turn in your solutions to me, on paper. (*Hints are available if needed, but give it a serious try by yourself first.*)

1. (Justifying the stopping criterion.) It is unreasonable to expect that an iterative numerical optimization method will exactly hit a stationary point, where $\nabla f(\mathbf{x}^*) = 0$ holds precisely. Instead, we may stop when $\|\nabla f(\mathbf{x})\| < \varepsilon$ for some sufficiently small $\varepsilon > 0$ and hope that we are close to a stationary point. In this exercise, we explore whether we can back this intuition up with math.

Throughout, we assume that the function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ we wish to minimize is differentiable everywhere on \mathbb{R}^d , and that we have a sequence of points $\mathbf{x}_1, \mathbf{x}_2, \dots$ from \mathbb{R}^d for which

$$\lim_{k \rightarrow \infty} \|\nabla f(\mathbf{x}_k)\| = 0,$$

but nothing else (until stated otherwise).

- (a) Show by a *simple, univariate* example that without additional assumptions, we cannot even say that the sequence (\mathbf{x}_k) is convergent or that a stationary point even exists! (One example can take care of both of these.)
- (b) Suggest a simple heuristic to detect if this is the case (so we can stop the algorithm with a warning to user). Explain in one sentence what happens in your example from the previous part if your new stopping criterion is applied.
- (c) From now on, let us suppose (in addition to our initial assumptions) that the sequence (\mathbf{x}_k) converges to a point \mathbf{x}^* and also that f has a stationary point. It is tempting to expect that the limit point \mathbf{x}^* is a stationary point, that is, $\nabla f(\mathbf{x}^*) = 0$, but that is also false! Your task is the following: find a *univariate* function ϕ and a sequence of real numbers $(x_k)_{k=1,2,\dots}$ that satisfy each of the following conditions:
 - $\phi(x_k)$ strictly monotonically decreases to 0,
 - $\phi'(x_k)$ strictly monotonically decreases to 0,
 - $\phi'(0) = 1$.

(The first two conditions simulate what we might see while running a reasonable descent method for minimization, which will wrongly conclude that we have approached a stationary point.)

- (d) Now let us also assume that f is convex, in addition to all the other assumptions we have made. Show that in this case, we can finally conclude that the limit point \mathbf{x}^* is a global minimizer. (You may use all the properties of convex functions we mentioned in class, whether we have proven them or not.)
- 2.** (Misspecified parameters.) We have seen that an underestimated Lipschitz constant for the gradient could lead to non-convergence but is easily detected and mitigated by increasing the estimated L . This exercise shows what happens if we instead overestimate the strong convexity constant.

Let $f(x) = x^2/10$. This is an L -smooth and ℓ -strongly convex function with suitable parameters (ℓ, L) .

- (a) What are the best possible values for ℓ and L ? Use these parameters to determine a constant stepsize $\tau^k = \tau$ that guarantees convergence. Determine, for $M = \{3, \dots, 8\}$, how many iterations until we reach $f(x^k) < 10^{-M}$ from $x^0 = 1$? Does the rate of convergence appear linear? (You may either make a quick-and-dirty implementation of the gradient method for this simple univariate example or just derive analytically a recursion for $f(x^k)$ and implement that to compute the errors. Either way, include your code and the output in your answer!)

(b) The diminishing step size sequence $\tau_k = 1/(k + 1)$ would also guarantee convergence, but it's only a good step size (guaranteeing linear convergence) for the right values of (L, ℓ) . It actually does not work here.

Use your previous code to determine the number of iterations until we reach $f(x^k) < 10^{-1}$ from $x^0 = 1$ with this step size sequence. (*Hint:* If your code is correct, you do not want to try and run this nearer to completion—see also the next problem.)

(c) *Extra credit:* use analytic techniques to find a reasonably sharp bound on $f(x^k)$ for general k (as a closed-form formula) when using the step size in the previous part, and show $f(x^k) > 0.001$ even for $k = 10^9$.)